授课老师: 马世琪
上课时间: 2-17周 星期五下午 13:30pm – 16:15pm
上课地点: 吉大南校逸夫楼 301
先修课程: 实变、泛函、偏微分方程
课程讲义: 链接
考核方式: 平时作业50% + 期末考试50%
序号 | 日期 | 内容 | 讲义 | 作业 (上课前交) |
---|---|---|---|---|
Lecture 1 | 03/07 | Introduction | hw1: Due March 14 | |
Lecture 2 | 03/14 | Preliminaries, Schwartz space | hw2: Due March 28 | |
Lecture 3 | 03/21 | Tempered distributions, Fourier transform | ||
Lecture 4 | 03/28 | Symbols, ΨDOs and Sobolev spaces | ||
Lecture 5 | 04/04 | No lecture (清明节) | hw3: Due April 25 | |
Lecture 6 | 04/11 | Kernels | ||
Lecture 7 | 04/16 | Oscillatory integrals I | ||
Lecture 8 | 04/25 | Oscillatory integrals II | ||
Lecture 9 | 05/02 | No lecture (五一劳动节) | hw4: Due May 23 | |
Lecture 10 | 05/09 | Stationary phase lemma I | ||
Lecture 11 | 05/16 | Stationary phase lemma II and Symbolic calculus | ||
Lecture 12 | 05/23 | Symbolic calculus and semi-classical ΨDOs | ||
Lecture 13 | 06/03 | Semi-classical ΨDOs and the wavefront set | hw5: Due June 20 | |
Lecture 14 | 06/06 | The wavefront set | ||
Lecture 15 | 06/13 | Propagation of the singularities | ||
Lecture 16 | 06/20 | Q&A | ||
待定 | Final exam |
拟微分算子: