Homework #3 (due April 25th)

Exercise 1. Prove $\mathscr{S}(\mathbb{R}^n) \subset S^{-\infty}$, namely, $\forall \varphi \in \mathscr{S}(\mathbb{R}^n), \varphi(\xi) \in S^{-\infty}$.

Exercise 2. Let $m \in \mathbb{R}$. Let ψ be a smooth and uniformly bounded function in \mathbb{R}^n . Shows that $\sigma(x,\xi) = \psi(x) \langle \xi \rangle^m$ is a symbol of order m.

Exercise 3. Prove that the Dirac delta function $\delta \in H^{-s}(\mathbb{R}^n)$ whenever s > n/2.

Exercise 4. Let σ be the symbol defined by

$$\sigma(\xi) := e^{-|\xi|^2/2}, \quad \xi \in \mathbb{R}^n.$$

- (1) What is the kernel of the pseudodifferential operator T_{σ} ? Hint: Use the fact that $\widehat{\sigma}(\xi) = \sigma(\xi)$.
- (2) Show that $T_{\sigma}\varphi$ is real-analytic for any $\varphi \in C_c^{\infty}(\mathbb{R}^n)$. Hint: Use the kernel form of T_{σ} and compute the convergence radius of the Taylor series.
- (3) Conclude that the pseudodifferential operator T_{σ} does not map $C_c^{\infty}(\mathbb{R}^n)$ into itself.

Exercise 5. Fix C > 0 and $\chi \in C_c^{\infty}(\mathbb{R}^1)$. set $\sigma \in S^{-1}$ in \mathbb{R}^1 as

$$\sigma(x,\xi) = \frac{\chi(x)}{\xi + iC}.$$

Compute the kernel of T_{σ} .