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ABSTRACT. This is a introductory course focusing on some basic notions in pseudodif-
ferential operators (PDOs) and microlocal analysis. We start these lecture notes with
some notations and necessary preliminaries. Then the notion of symbols and ¥DOs are
introduced. In Chapter [3] we define oscillatory integrals of different types. Chapter [ is
devoted to stationary phase lemmas. One of the features of the lecture is that stationary
phase lemmas are proved for not only compactly supported functions but also for more
general functions with certain order of smoothness and certain order of growth at infinity.
We build our results on stationary phase lemmas. Chapters @ and [7] cover main results
in ¥DOs and proofs are heavily built on Chapter [df Some aspects of the semi-classical
analysis are similar to that of microlocal analysis. In Chapter [§] we introduce the notion of
the wavefront set, and Chapter [J] focuses on the propagation of singularities of solutions of
partial differential equations. Important results are circulated by and some
key steps are marked in red color. Exercises are provided at the end of each chapter.

Version: April, 2022.
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CHAPTER 1

Preliminaries

A good reference for these is [Won14, Chapters 1-5].

1.1. Notations

R™: the Euclidean space. For z € R", |z| := /2% +--- + 22, and the inter produce

x-y:= )", ;y;. The notation (z) := (1+ |z|2)1/2 will be frequently used throughout the
lecture. For two quantities A and B, we write A < B to signify A < CB, and write A ~ B
to signify ChB < A < Oy, for some generic positive constants C, Cq; and Cs. It can be
checked that (x) ~ 1+ |x|.

LEMMA 1.1. For any s € R and any multi-index «, there exists a constant C independent
of © such that
|0%((x)*)] < C<$>S_‘°‘|, when |z| > 1.

The proof is left as an exercise.

C™(R"™; C) is the set of complex-valued functions that has continuous derivative up to
order m. C2°(R™) is comprised of C*° functions with compact support.

The Fourier and inverse Fourier transforms of f are denoted as Ff (also f yand F~1f

(also f):
fO) = F©) = 20 [ o) s

f(&) = F 7 f(a) = (2m) 2 / TR de.

) = Jgn f(2)g(x) £,9) == Jgn f(z)g(z) dz, where g(z) is the complex conjuga-
tion of g(x).
0; = %, Dj; := -0;|, where i is the imaginary unit.
i
Multi-index: in R™, a multi-index is o = (al, ..., 0,) where oj are non-negative integers.

D®:= D" .- D% 9% := 9" --- 9%, and z® := " - -2, and the length of « is |a :=
a1+ o

LEMMA 1.2. Assume x € R™ and « is a multi-index. Then

2°] < [l
Proor. We have
2] = |2f o el e R o e E TR T
< ool = [afert e — [o]e,
O
More on multi-index:
o < ameans Bj <ajforj=1,...,n;
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e the notion o — f is valid only when 8 < o, and o — 8 := (g — B1, -+, an — Bn);
o ol i=aq!-ayl;

! n Iy — ol .
o when § <o, (§) = gratan = (5) - (1), where () = g =gy

A typical form of a linear differential operator is 3_, <., aa(z)D%. If we denote a
polynomial p(z, &) 1= 3, <y, a(2)” where { € R™, then

> aa(x)D* = p(z, D).
|| <m
LEMMA 1.3. Assume f,g € C*°(R") and « is a multi-index. Then
(67 « a—
(1) = 3 (§) 0" Hiwa)
BLa p

The proof is left as an exercise.

1.2. Schwartz Space and tempered distributions

DEFINITION 1.4 (Schwartz Space). Let ¢ € C*°(R"™). For multi-indices o and [, we
define the semi-norm |- |, g of ¢ as

|ola,p == seuléa |:c°‘DB<p(x)] < +o0. (1.1)
x n

We call ¢ a Schwartz function when |p|o 3 < +00 for any a and 3. The set
{p € C(R"); |plas < +00, Va, 5}
together with the topology induced by the set of semi-norms |- |, is call the Schwartz

space, denoted as | . (R") |

The topology T is induced by {|- |48} is defined as follows. Choose
N(o, Bs€) :={p € L(R"); |¢lap < €}
to be open neighborhoods of point 0 € . (R™). Choose
N :={N(a, B;¢€); a, f are multi-index, e > 0}

to be a open neighborhood basis of 0, and p+N the open neighborhood basis of ¢ € .7 (R™).
Then the topology T is generated by these open neighborhood basis, see [JS06, §1.8] for
more details.

DEFINITION 1.5 (Convergence in Schwartz space). A sequence of functions {p;}; C
Z(R™) is said to converge to zero in .7 (R"™) if
VOZ,B, |@]|O¢,ﬁ -0 .7 — 00, (12)
denoted as ¢; — 0 in S (R").

LEMMA 1.6. We have
FZRY) = LR, 0“R") C L (R").

The space . (R"™) are often be used as test functions set. There is also another commonly
used test functions set: C2°(R™). In Fourier analysis the set ./(R™) is more commonly used
than C2°(R™), and one of the reason is that .#(R") is closed for the Fourier transform F.
The uncertainty principle claims that the Fourier transform of any compactly supported
function is impossible to be compactly supported, namely, FC>°(R™) # C>°(R™).

LEMMA 1.7. C°(R"™) is dense in .7 (R™).
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ProoF. Fix a function ¢ € C°(R") satisfying ¢ = 1 when |z| < 1, and ¢ = 0 when
|z] > 2, and 0 < ¢(x) < 1.

For any ¢ € .(R"™), denote () := @(z)p(ex), then {p,}eso is a sequence in C°(R™).
Then for any multi-index « and 3, we have

(6 = belap = sup [2°0° (p(x)[1 = ¢(ex)])| = sup [2°0"(p()[1 — ¢(ex)])]

€R" |z|>1/€

< sup 270 (p(@)[1 - d(ex)])| + sup |2°07p(x)]
1/e<|z|<2/e |z|>2/€

= sup  [2%0%(x)||1 — ¢(ex)| + Oe) + sup |a*0 ()]
1/e<|z|<2/e |z|>2/e

< sup  [2°0%p(x)[ + O(e) + sup [2°0%p(x)]
1fe<|al<2/e j2l>2/e

<2 sup |z°0°%p(z)| + O(e).

|x|>1/€

Because supgn ]a;?maaﬂgo(a:)\ < 400, we have that \x?xo‘aﬁgo(:c)] is bounded in R”, so
z|?|z*08p(x)| is bounded in R™, thus |20°¢(z)| < Cug(x) 2 for certain constant C, g.

7ﬁ 7/3
Therefore,

|6 — dela,s < 20&,5| S\E?/ ()24 0(e) -0, €—0.

The proof is complete. O
LEMMA 1.8. Let f € S(R™). Then Vs € R, we have
(1+[2[*)*f(z) € S (R").

PROOF. Let o be a multi-index. Then
o

D[+l )] = X () DO+ o)) - (0.

o<a

We should notice that |[D?((1 4 |z|%)*)| can be always controlled by (1 + |z|?)!s for certain
ts € R large enough:
ID°((1+]2?)%)| < (1+|z]?)%, Vo e R™

Hence, for any non-negative integer k and multi-index «, we have

(141 D[4 o) @) < 3 () 1+ Py DS o)

<a

(6%
< j{: <5;)Chﬁaﬁ ::C%¢x<:—%oo.

<a

We proved the conclusion. O

Schwartz functions are these who decay fast enough. Now we introduce another type of
functions which grow at infinity, but with a mild speed. These functions are called tempered
functions.

DEFINITION 1.9 (Tempered functions). Let f be a measurable function defined on R"
such that

sup ‘(1 + |:c\)7mf(a:)‘ < 400
reR?

for some positive integer m. Then we call f a tempered function. If f is continuous, then
we call it continuous tempered function.
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LEMMA 1.10. Assume f is a smooth function such that 0% f are tempered functions Yo,
then we have f - .7 (R™) C Z(R").

The proof is left as an exercise.

DEFINITION 1.11 (Tempered Distributions). A linear functional T is called a tempered
distribution if for any sequence {¢;}; of functions in .(R™) converging to zero in .#'(R"),
we have

T(pj) =0, (j— 400).

It can be checked that the set of tempered distribution, denoted as |.%/(R™)|, is the

dual of Schwartz Space .7 (R™).
Recall the semi-norm | - |, 3 defined in (L.1)). We define a new norm | - |,,, as

olm = > o

e, |8]<m

a,B

It can be seen that ||, < [@|m+1-

LEMMA 1.12. “T € (R™)” is equivalent to the following statement:

there exists a constant C' such that Im € {0} UNT s.t. ‘ IT(¢)| < Clelm

, Vo e S(R").

PROOF. (<) Assume Im € {0} UNT sit. [T(¢)| < Cl¢|m, YV € S (R"™). Then for
every sequence {¢i}tr C 7 (R") satisfying ¢ — 0 (k — +00), we have |¢g|m — 0 (k —
+00). So [T(¢k)| < Cloklm — 0 (kK — +00). This means T € ./ (R").

(=) Assume T € .’'(R™). Suppose that the claim is not true, then for every positive
integer M, and every m € {0} UNT, there exists ppm € . (R"™) such that

’T(‘PM,m)’ > M|‘PM7m|mv Y ’T(‘PM,m/(M’SOM,m‘m))’ > 1.

Let ¢arm = omm/(M|orrmlm), then |oasm|m = ﬁ and |T'(¢arm)| > 1. Further, we denote

¢a = ¢arur, then |gar|y = 77 and

T(par)| > 1, YM € N*. (1.3)

Now for every m € {0} UN™, when j is large enough, we have
1 .
|Djlm < |5l = 70 (J = +00).

So according to the Definition we have ¢; — 0 in “(R"), so according to the definition
of tempered Distributions we shall have |T'(¢;)| — 0. But this is contradictory with (1.3).
The proof is complete. U

The notion of “tempered function” and “tempered distribution” are closely related.
Every tempered function f defines a tempered distribution 7y € #/(R") by the following
way:

Ty(p) = A f@)p(z)dz, Yeoe S (R").
At the first glance, the definition of tempered distribution is not a generalization of

the definition of tempered function. But the following theorem will characterize tempered
distributions through tempered functions.

THEOREM 1.13 (Schwartz representation Theorem). Every T € .'(R™) can be repre-
sented as a sum of certain order of derivative of continuous tempered functions in .7 (R™),
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i.e. for everyT € /'(R™), there exist a finite collection Ty, g of bounded continuous functions

such that
T= Y a°DT,4
|lal+|8|<m
See §1.4 in https://math.mit.edu/~rbm/iml/Chapterl.pdf

THEOREM 1.14. For 1 < p < +o0, there holds |.(R™) C LP(R") C &' (R").

1.3. Fourier transforms

DEFINITION 1.15 (Fourier Transform on . (R™)). Let f € (R™), then the Fourier
transform of f is defined as

(FNE) =@ [ ) s, Ve R

where z - £ =3 | 2;¢;. We also denote the Fourier transform of f as f .

DEFINITION 1.16 (Inverse Fourier Transform). Let f € . (R"), then the inverse Fourier
transform of f is defined as

(FAp @)= n 2 [ depe g ve e R

We also denote the inverse Fourier transform of f as f.

LEMMA 1.17. For every f,g € Z(R™), we have:

(1) F, F~l: Z(R") — Z(R") are linear bijection;

@) (f9) = (£,9);
(3) (f,9) = (f,g). (Parseval’s Relation);
(4) F(f+g) = (2m)"2f - g;
(5) F(f-g) = (2m)"2f *g.

Let’s define an operator
R: f(z) € Z(R") = (Rf)(z) = f(—z) € Z(R").

Then these four operators {I, R, F, F '} act very like {1, —1,4, —i}. Denote a multiplication
operation X; as X;p(x) := xjp(z). We have the following relations:

PROPOSITION 1.18.

(1.a) RF = FR = F1; ((-1)-i=i-(-1)=—1)
Sl S S PN O
(1.d) RR = I. 7 (-1)-(-1)=1)

(2(1) ij:Xjf, ]:Xj:—Dj]:,
(2.b) F°D; = —D;F%, F’X; = —X,F>

THEOREM 1.19 (Plancherel Theorem). F and F~! defined on .7 (R™) can be extended
uniquely to a unitary operator on L?*(R™).

PROOF. C®(R") C #(R™) C L2(R") and CX(R™) 126" — [2(R7) So #(R) is
dense in L2(R") with respect to the L? norm.

For any f € L*(R"), let {pn}n C Z(R") such that ||¢, — fl2@ny — 0 (n = +00),
then

[ Fem = Fenllr2@ny = 1F(0m = @n)ll 2 @n)
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and by the Parseval’s Relation we can continue
HF(Pm - ]:(PnHLQ(R") = H‘Pm - SOnHL?(R”) — 0, (m,n — +OO)‘

Therefore {F,,}y, is a Cauchy sequence in L?(R™) and has a limit. We denote the limit as
Ff and assign it to f as the Fourier transform of f. O

The Fourier transform and inverse Fourier transform can also be uniquely extended on
S (R™).
DEFINITION 1.20 (Fourier Transform on ./(R")). Let T € ./(R"™), then the Fourier

transform and inverse Fourier transform of T are defined to be the linear functionals FT
on . (R™) given by

(FT)(p) =T(#), ¥y € S (R"),
(F'T)(p) =T(p), ¥ € S (R").

THEOREM 1.21. For every p € /(R™), T € /' (R"), we have:

(1) F,F~1: 7' (R") — &' (R™) are linear continuous bijection.

(2) FloT) = (2m)"/?¢ - T

(3) F(op-T) = (2m) "¢+ T.

The Proposition also holds on ./(R™). The operator R for T' € ./(R™) is defined
as:

(RT)(p) :=T(Re), Vo € S (R").

The Fourier transform are both (1, 4+00)-type and (2,2)-type bounded. And we have
LP(R™) C L' (R™) 4+ L?(R™) when 1 < p < 2. Therefore we can define the Fourier transform
F on L'(R™) + L?(R") by and then study the boundedness of Fourier transform on
LP(R™) with 1 < p < 2. For details about these L'(R") + L?(R") things, please Google
“Riesz—Thorin theorem”. Therefore according to the Marcinkiewicz interpolation theorem
(see [SteT0, Appendix B]), we have the following result.

f= i+ f2 € LP(R"),

fr e LY(RY), fr € LX(R™),

JF1: Fourier transform from L'(R") to L'(R"™), (1.4)
F»: Fourier transform from L?(R") to L?(R"™),

F(f) = Fi(f1) + Falfa).

THEOREM 1.22 (Hausdorff-Young inequality). Define the Fourier transform on L' (R™)+-
L?(R™) by , then there exists a constant Cy, such that for all f € LP(R™), (1 <p <2),
we have

HfHLp’(Rn) < CHfHLP(R")a
where 1 <p<2and1/p+1/p =1.

PROOF. We know that F and F~! are bounded from L!'(R") to L>°(R") and L?*(R")
to L?(R™). So according to Marcinkiewicz interpolation theorem, V¢t € [0,1], F and F~!
are bounded from L' (R"™) to L?2(R"), where

t1:<t-;+(1—t)-1>_1:2

2
be(t-lsa_n.0) =2
27\ 2 Tt

Let p = t1 p’ = to, then we proved the theorem. O




EXERCISE

Exercise
EXERCISE 1.1. Prove Lemma [I.1]
EXERCISE 1.2. Prove Lemma [[.3

EXERCISE 1.3. Prove Lemma [1.10)
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CHAPTER 2

Pseudodifferential operators

In this chapter we introduce the pseudodifferential operators, and in most of the place
we abbreviate it as YDOs. First, we introduce symbols and its asymptotics. Then the
WUDOs are its kernels are defined. Finally, we prove an important property of YDOs-the
pseudolocal property. Other references are [Won14, Chapter 6], [GS94, §1 & §3].

2.1. Symbols

Recall the general form p(z, D) = ;< @a(2)D® of the linear differential operators
mentioned is For a test function ¢, we have

p(z. D)p(x) = Y aa(@)D%(@) = Y aa(2)F {Dog}(x)

laf<m laf<m

= > aa(x)F ()

lor|<m

= 3 aalz)@m) / EEH(¢) de

n
lo]<m

= n) [ Y el de

laj<m

=0 [ e gpe) de.
This observation encourages us to define operators by functions p(z, ).

DEFINITION 2.1 (Kohn-Nirenberg symbol). Let m € (—oo, +00). Then we define S™ to
be the set of all functions o(x,§) € C°(R™ x R™;C) such that for any two multi-indices «
and f3, there is a positive constant C, g, independent of (z,§), such that

(D2DLo)(@,€)| < Caple)™ P, va,e€R"

holds. We call any function ¢ in S™ a symbol of order m. We write S7°° = NecrS™ and
ST = UperS™.
EXAMPLE 2.2. Here we give some examples of symbols.
® > jaj<m @a(®)E" is a symbol of order m when aq € 7(R");
o Z(R") C 5~
e Fix a bounded ¢ € C*°(R"), then ¢ (x)(£{)™ is a symbol of order m;
e Fix a ¢ € CX(R") with ¢(0) = 1, then (1 —¢(&))(1+[£])™ is a symbol of order m.

LEMMA 2.3. Assume oj € S™ (j =1,2), then o109 € S™1™2. 9% € Sma=lol,

The proof is left as an exercise.
One can also define a more general symbol which the effect of x is taken into consider-
ation, and the dimension of x variable and £ variable can be different.

12
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DEFINITION 2.4. Let m € (—00,+00) and 0 < § < p < 1. Then we define ST’ to be the
set of all functions o(x,§) € C°(R™ x R"2;C) such that for any two multi-indices « and
B, there is a positive constant C, g, depending on o and 3 only, for which

(DEDLo)(x,€)| < Cap(e)™ PPl vz e R™ € € R™

holds. We also call any function ¢ in Sg:‘(; a symbol.

The Kohn-Nirenberg symbol S = ST. In what follows, we only focus on S™, and the
situations for S,Z,Lé shall be followed in similar manners.

Now we introduce an important notion: the asymptotic expansion of symbols.

DEFINITION 2.5 (Asymptotics). Let symbol a € S™ and a; € S™ (j =0,1,---) where
the orders m; satisfies

m=mg >my > >m; > mj1 —» —00, J — 0.
If

N
a— Zaj € SN+
j=0
holds for every integer N, we write
a ~ Z a; in S™,
J
and we call {a;} an asymptotics of a. The ag is called the principal symbol of a.

We often write a = b+ S™ as a shorthand of ¢ = b + r for some r» € S™. Then we can
summarize Definition [2.5] as follows,

N
an~ g aj in SNt & a= g a; + SN
J Jj=0

Now let’s randomly pick up some m, m; that satisfy the requirement in Definition

and randomly pick up a; € S™ A natural question is to ask, does there exist a € S™ such
that a ~ >, a; in S™7 The answer is yes.

THEOREM 2.6. For any m and m; satisfying
m=mgp>my > - >MmMj>Mjr] — —00, Jj — o0,
and for any a; € S™i, there exists a symbol (not unique) a € S™ such that a ~ Zj aj in S™.

When x — +o0, ﬁ/(@ =14 1/(z) + 1/(z)? + O(1/(z)3). Arbitrarily pick up «;, is
there a function f(z) such that in [1, +00),

fle)y=Y" aj/(@) +O0(1/{@)"*), x— +oo, (2.1)
0<j<N
holds for all N € N? The answer is no and an example is «; := j! (the convergence

radius goes to infinity as N grows). The problem is that a;j/(z = 1) will be too big when
j — 400. However, we can fix this problem by cutoff, so that there exist a function f (not
unique!) such that holds on intervals [A;, +00) where the A; is in accordance with a;,
Ay < As < ---. The key step is to choose a cutoff function x; to cutoff term a;/(z)’ such
that

xj(x)a;/(x)y < 1/27) or 1/37 etc. (2.2)
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The following function satisfies the requirement:
xj € C*(R),
X =0, |z[ < 2(a )1/]

Xi = 1lal > 14 2(ay)'7, %)
0 < x; < 1, otherwise.
The requirement can also be realized by fix some x satisfying
{x € C*(R), 0 < x(z) <1 2.4)
X =0 when |z| <1, x; =1 when |z| > 2.

and then set x;(x) := x(¢jz), where the €; shall be chosen according to ([2.3).
SKETCH OF THE PROOF OF THEOREM 2.6 Choose suitable coeflicients ¢; and define
&)=Y x(g8a;(z,§), &R,
Jj=0
It can be checked that x(€;€) € S°. For any fixed (2o, &), there is only finitely many terms
in 350 X(€50)a;j(wo, &) which are non-zero, so a(z,§) € C*°(R" x R";C). Moreover, we

need to show first a is a symbol, and second a is an asymptotics of a;.
First, we show that a € S™. It can be checked that for any multi-index S,

IDZ (x(€56))] < Cple) ™", Ve ER™,

where the constant Cj3 is independent of €;. we notice that every term x(e;&)a;(z,§) is in
S0tm; = §Mi 50

D?Dg(x(ﬁaﬁ)a (,8)) = x(26;€) DS D (x(¢;€)a; (. €))

j
x2e9) Y () D () (0207 0.6
B'<p
x(2€;€) Z <6,>C’g/ -8l . Caﬂ’ﬁ/@)mj—\ﬂlﬂﬁ’\
B'<B h
X(2€¢6) D <§,> CprCap,p ()™ 1Pl = x(2€;€)Cp(§)™ 1P
B'<B
:Ca,ﬂ<£>mj m (26 5) <> m—|B|
< Ca,p(26))™ " x(2€5€) - (€)™
< Coyp(26)™ ™ - ()™ 1A,

where the change “(£)" ™™ — (2¢;)™ ™7 is due to the presence of x(2¢;£). Hence,
|DgDEa(x, &) < (€)™ -3 Cap(2e)" .
Jj=0
We choose €; to decrease fast enough such that ;- Ca 5(2€;)™ ™" is finite for every a, 8

(see [Won14, Theorem 6.10] for details). We proved a € S™.
Second, to show a ~ Zj a; in ™, we see

Yo oaj= > €8 - a9+ Y x(eaj(x, &)
0<j<N 0<j<N j>N+1
€57 4 MmN = SN+
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The proof is complete. ([l

2.2. Pseudodifferential operators

2.2.1. Some basics about the YDOs. Based on the notion of symbols, we introduce
the pseudodifferential operators.

DEFINITION 2.7 (Pseudodifferential operator, ¥DO). Let o be a symbol. Then the
pseudo-differential operator T,, defined on ./(R™) and associated with o, is defined as

(Trp)(w) 1= @m) 7 [ eSo(a,)2(6) de

=l [ Aot e i) Ve e S @)

We denote the set of ¥DOs of order m as U™ We write ¥~ = N,,cg ¥ and U+ =
UmerP™.

EXAMPLE 2.8. Here we give some examples of WDOs:
e —A ¢ ¥2, with symbol |¢|?;
® > jaj<m Gal(z)D* € U™, with symbol 3, <, aa(®)E%;
e (I —A)™? c U™ which is defined by the symbol (€)™ = (1 + [£[2)™/?;
e The DtN map of the Calderén problem is a ¥DO living on the boundary, see
[LUR&9].

It is an interesting question to ask for the symbol when given a certain WDO.

EXAMPLE 2.9. Some simple YDOs whose symbol are also simple:

e D¢
e ~A=D-D,so—Aws [£]2

Similar to Lemma [2.3], we have the following claim, whose proof will be provided in
Theorem [5.3]

LEMMA 2.10. Assume o; € S™i (j =1,2), then T,, o T,, € ¥™+m2,
We show that the map o — T}, is a bijection.
LEMMA 2.11. map o — T, € L(Z(R"),.7(R™)) is a bijection.

PROOF. The WDO 7T, is defined by o, so the surjectivity is obvious. The injectivity
amounts to prove T, =T, = o =T.
Let’s assume ¢ and 7 are two symbols and T, = T, then

/ e[, €) — 7(x, )] p(€) dE = 0

holds for any z € R™ and any ¢ € . (R"). Replace ¢ by its inverse Fourier transform, and
fix x to some g, we can see

[ o0, &) = . ele) dg =0,
The arbitrary of ¢ gives
e [o(x0, &) — T(20,€)] =0, Vap € R™

And the arbitrary of xq gives o(xg,&) = 7(x0,§) for Vg € R™. The injectivity is proved.
We arrive at the conclusion. O
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REMARK 2.1. For people who the first time encounter the form

Topla) = [ *a(z,)0(6) ds.

one may think that T,¢(x) is just the inverse Fourier transform of o(z,£)»(§), and conse-
quently, o(x,£)p(£) can be recovered by taking the Fourier transform of T, ¢(z). Unfortu-
nately this is not true. The function o(z,&)»(§) depends not only £ but also z, so that is
not a Fourier transform anymore. When a symbol a is independent of x, we have

F{T5¢}(&) = al§)@(E)

But when a depends on z, the Fourier transform of (7,¢)(x) is generally NOT a(z,§)$(&).
In generally, we cannot use the expression above to get the symbol a:

a(z,§)@(€) # F{(To0)(-) } (€)-

Similar to generalizing the Fourier transform from functions to distributions, the notion
of YDOs can also extend to .#/(R™) by using duality arguments. Formally speaking, we
have the following computation,

(True) = [T = [ [2m)"72 [ coéo(a, i) dg)ote) o
— [len™ [ 4o, guty) dydefiolz) da
— [utwfzm) [ etsate. oo dude] dy

N/u(y)[( n/ (y— x)EZ oy, &)p(z)dzdg] dy  (Taylor’s)

~ /u(y)[(Qw)—n/( a(gily—)€) Z 8” (y, )p(x) dz dé] d
~ [utien— [ ety L o Dgoly. p(z) dade] d

~ [utlen: [ ewsz — 05 Dga(y, ©)p(€) d€] d
~ [T e dn. o= 3 0 DE )

= (u, Ty ). (2.5)
The computation (2.5)) implies the existence of the adjoint of T, (denoted as 7)), and we

leave the rigorous proof of the existence of T} to §5.3l Now, by assuming the existence of
TZ, we extend the domain of T, from .(R") to ./(R™) as follows.

DEFINITION 2.12 (Pseudodifferential operators in .#”). Let ¢ be a symbol. For every
u € ' (R™), we can define the pseudo-differential operator T, acting on u as

|(Tou, ) = (u, Ty), Yo € S (R").]

where T} is the adjoint of T, and the bracket (-,-) signifies the pair of distributions with
test functions.

LEMMA 2.13. Let o be a symbol, and denote its corresponding YDO as T,. Then
T, (Z(R")) C L (R™). And also, T,('(R™)) C ' (R™).
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SKETCH OF THE PROOF. Let ¢ € .%(R"), we need to show z%D?(T,¢) are bounded in
R™. We can show

2D (Typ)(x) = ) /e”f&a',/a'(m,f)f{xalDﬁlw}(ﬁ) d¢
o B!

where G,/ g are also symbols of certain orders, say, m. Because ¢ € .7(R"), we know that
the Fourier transform F{z® D% o} € .#(R"), so

[F{z® DY} S (&M
for any positive integer M. Hence,
2D L)) S 3 [1Om 1) de < oo
a/”B/

when we take M to be large enough.
For the second conclusion, from (T,u, ) := (u, TFp), V¢ € (R™) we have

((Tow, o)| < [[ullllToell < lullleln
where m is the order of o. Then by Lemma we can conclude T,u € &/ (R"). O

In conclusion, there holds

S — S,
T,: PNy (2.6)

where . is a shorthand for .(R™). Space . represents functions which are extremely
smooth (good), while .’ represents “functions” which are extremely rough (bad). To
quantize the goodness and the badness, we introduce the potential spaces.

2.2.2. Sobolev spaces.

DEFINITION 2.14 (Sobolev spaces). We denote

H*P(R") := {f € '(R"); (I - A)*/*f € LP(R")} ],

and define the norm || f||gs» = ||(I — A)S/QfHLp(Rn). Write H*(R") := H*?(R").

LEMMA 2.15. The normed vector space (H*P(R™),||-||gs») is a Banach space, and
(H*(R™), ||| ;=) is a Hilbert space.

THEOREM 2.16. Let ¢ € S™ and denote its corresponding YDO as T,. Then the
mapping Ty : H5(R™) — H*~™(R"™) is bounded.

The proof of Theorem is based on the L? boundedness of ¥DOs of order 0. Formally
speaking,

1T fllme=m = (T = A)ET™2 0 T, fl| 2 S I = A2 fll e = || fllare-

THEOREM 2.17. For a fized constant s € R, Vrt:r <s<t, VC >0, Vp € L(R"),
we have:

1 _
lellzs < Geslleli + el (2.7)
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REMARK 2.2. We know that when t > s, ||¢||gs can be controlled by ||¢|| g::

lollas <1l ae-

The key point of Theorem is that ||¢||ms can even be “controlled” by c¢ - ||¢|| gt with
0 < ¢ < 1. But we need to pay for this: being dominated only by ¢ - ||¢||g¢ is not enough.
Due to the fact that c is less than 1, certain “byproduct” should cost to compensate the
advantage, and this so-called “byproduct” is ||¢|| .

PROOF OF THEOREM [2.17l When 0 < C < 1, it is trivial. When C' > 1, we have:

Il = 17 o Tl = -0l = [ (10 dg

25| ~ 2d 25| ~ 2d
()20 de + /{@w}@ PO de

/{(E><\@}

25—2r 2r| » 2 —1\2t—2s | 2t 2
J ey @ @O [ (@7 g

<

VT T |p(©)F de + /{@1 s }<\%>HS O] dg
<ve

25—2r 1

C 2r |4 2d 2t—2s 2t 2d
V& [ PR s+ (o [ ¥lpoPag
= Ol + el

This completes the proof. O

/{(£>§\@}

REMARK 2.3. In the proof of Theorem [2.17] when ¢ is compactly supported and s = 0,
and if we replace (£) by |¢| and choose r = 0 and C' to be small enough and use the fact
that

J ey POPAESC s (€ £ Ol < OV Tswop Al
- l€1I<vC

we can prove the Poincare’s inequality ||¢|[z2 < ||(—A)Y2¢p|| 2 for the set of functions with
uniformly compact support.

Noticing that (§) > 1, we can further extend Theorem to more generalized situation.

THEOREM 2.18. For a fived constant s € R, VYt > s and Vr € R, Ve >0, Vo €
L (R™), there exists a constant Cy sy such that:

1990y

lpliErs < ellellzr + Craellellir- (2.8)

As mentioned in Remark Theorem [2.18| expresses the same information, in addition
that the “byproduct” can be ||¢| g with any r € R,

PROOF OF THEOREM [2.18] We pick up some constant C' > 1 first, and then we decide
its value later.

lellzrs = IF " o—sFell3 = lo—spll3 = /Rn@%@(&)IQdé

25| ~ 2 25| ~ 2
(€)2%]6(6) 2 dé + / PNCREGIRE

{)>

- /{1<<£><x@}

- @ @TIOr g [ (@7 @ s

/{1<<£><x@}
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< max{1, V&> Y. / (€7 |p(6)| e
{1<(6)<VC}

1 2t—2s 2t » 2
+ (€ &7 dg
frgrep) G 10000
1

2s—2r i oA _ ~
<max(1,VE" Y [ (e de+ (S0 [ @M e de
2s—2r s—
= max{1,VC" "} llollH + C* el
Now let C' = €~ and let C} 54 = max{1,V 028727“}, then we completes the proof. O

2.2.3. Other phases. Beside the phase (z — y) - £ in the expression

(Top)(z) = (2m)™ / g (2, y, €)ply) dy dé

in Definition it is possible to use more general functions as the phase functions and the
corresponding operators are still WDOs, i.e.,

Polx) = (2m) ™ / B2, y, €)p(y) dy de

will still be a DO is the ¢ satisfies certain conditions. See [Sogl7, §3.2] for details.

2.3. Kernels

The expression in Definition [2.7] can also be represented as

(Top)(z) = - K(z,y)p(y) dy, (2.9)

where K (z,y) is called the kernel of T,

K(z,y) = (21) " / 0 (2, €) de,

and the integration shall be understood as an oscillatory integral (see Definition .
Differential operators such as P = »'_, x;0; maps /(R") — Z(R"), C(R") —
C°(R™), and E(R™) — E(R™), and so by duality argument, we know differential operators
P maps ' (R") — &'(R™), D'(R") — D'(R"™), and &' (R™) — &' (R™):
P E'(R") — E'(R™)
| D'(R™) — D'(R™)
But for pseudo-differential operators T, generally speaking, we only have T,: &'(R") —
D'(R™).
E'(R") — D'(R")
T,: § €'(R") 4 E'(R)
D'(R™) A D'(R™).
A DO which maps & to &’ is called properly supported. In fact any YDO can be divided
into a properly supported part and a C'°°-smooth part.

LEMMA 2.19. Assume m € R and o € S™ is a symbol, and K(x,y) is the kernel of
T,. Then for any € > 0, there exists two symbols o1 € S™ and oo € S™° such that
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o = o1 + o9, T, is properly supported, Ty, is smooth, and their kernels Ki, Ko has the
following properties:

supp K1 C {(z,y) € R*"; [z —y| < €}, (properly supported)
supp Ko C {(x,y) € R*; |z —y| > ¢/2}.  (smooth)

IDEA OF THE PROOF. The proof needs Theorem
Fix a cutoff function xy € C2°(R) such that x(t) = 1 when |t| < €/2 and x(t) = 0 when
[t| > e. We have

Too(z) = (21)" / g (2, €)p(y) dy dE = T'ol(z) + T (2),
where

T'p(x) = (27T)_"/€i(m_y)'$x(lw—yl2)0(x,€)s0(y) dy d¢, 10)
2.10

T"p(x) = (2m)" / VL = x| — yI))o(z, &) ly) dy dé.

By Theorem we see that there exist o1, o9 € S™ such that 7" = Ty, and 7" = T,, so
T, =T, + Ty, = T5,+0,- By Lemma 2.11] we know o = o1 + 0.
The fact o9 € S™°° can be seen when using the asymptotics in Theorem namely,

1 e
or(2,6) = 3 SPsoy(( —x(lz = yP)o (@) gm=(se + 5" =g Nt
la|<N

holds for VN € N, so g9 € S™°.
From (2.10]) we can see

Ky (2,y) = (2m)" / eV ([ — y o, €) de,

Ko(z,y) = (2m)" / V(1 y(J — yP?))o(, €) dE.

which implies T} is properly supported. And the requirements for the supp K7 and supp K;
can be seen from the expression above. The proof is complete. O

2.4. Pseudolocal property
We talk about singular support and pseudolocal property.

DEFINITION 2.20 (Singular support). For a distribution u € %', we define its singular
support to be the complement of the set (\{O C R™; O is open and A C O} where

A={z eR";uis C™ at z}.
We denote the singular support of a distribution u € 2’ as sing supp u.
It is obvious that singsuppu is as closed set and
sing supp « C supp u.

We know a differential operator doesn’t increase the support of a distribution, but this
is not true for a WDO. More specifically, if a distribution u is supported in €2, then Tu
might not be supported in a domain 2 anymore. Instead, YDOs have another property,
called pseudolocal property, which means WDOs don’t increase the singular support of a
distribution.

THEOREM 2.21 (Pseudolocal property). Assume T is a ¥YDO, then

’ sing supp(7T'u) C sing supp u.
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PROOF. Assume x ¢ sing supp u. Because sing supp u is closed, we can find € > 0 such
that u is C* in B(xg,€). According to Lemma we can divided 7" into 77 and 75 such
that 75 is C*°-smooth and the kernel K7 of T satisfies

supp K1 C {(z,y) € R?; |z — y| < ¢/4}.

Hence, for Vz € B(xo,€/4), we have K(z,y) = 0 when |y — zo| > €/2.
Fix a function y € C2° such that x(y) = 1 when |y — x¢| < €¢/2 and supp x = B(xo, €),
then

Vi € Bxo,e/4), Tiulx) = / K (2, y)uly) dy = / K (2, y)x(v)uly) dy = T () (2).

Note that yu € C° C . due to the fact that u is C* in supp x, so T1(xu) € .. Because
Tiu =Ti(xu) € .7 on B(xo,€/4), we conclude that Tyu € C*°(B(zo,€/4)). Also, Tou € C
because T is C'*°-smooth. In total, Tu is C°°-smooth in a small neighborhood of xg, so

xo ¢ singsupp(Tu).
We obtain (singsupp u)¢ C (singsupp(7'u))¢. The proof is complete. O

Exercise
EXERCISE 2.1. Prove .(R"™) C S~°°, namely, Vp € .S (R"), p(§) € S™°°.
EXERCISE 2.2. Prove Lemma 2.3
EXERCISE 2.3. Prove Lemma [2.13] See [Won14, Prop. 6.7] for reference.



CHAPTER 3

Oscillatory integrals

In we encountered the notion of kernel of a ¥DO,

K(z,y) = (2%)_”/ei(m_y)'5a(9:7§) d¢.

which might not be integral in the Lebesgue sense (e.g. when o(x,£) = 1). However, if we
look back to the original definition of a ¥DO,

(To0)(x) = (2m) / e oz, €)p(€) de,

n

the integral above is always well-defined in the Lebesgue sense, because ¢ is rapidly decaying.
Specifically, for any m € R and any o € S™, we have

(L@ S [l el s [ mie ™1 de < +cx.

The problems emerges when we expand the Fourier transform ¢ (by a variable y) and
exchange the integration order of y and &:

(Top)(z) = (2m) ™ / ( / e (2, €)p(y) dy) de,
K(z,y)p(y) dy = (2m)" / ( / V0, €) dE) o (y) dy.

According to Fubini’s theorem, this exchange is valid only when all of the integrals involved
are absolutely integrable. From time to time we will encounter integrals of the form ,
but also more general than that. A rigorous framework is appealing for making the integrals
of these type always well-defined.

(3.1)

R

3.1. Oscillatory integrals - Type I

Generally speaking, for any v € .(R") and o € S™(R? x Rév ), one is interested in the
following integral

I(u) := /ei@(x’g)a(:c, Hu(z)drd (3.2)
where ¢ is a phase function defined as follows.

DEFINITION 3.1 (Phase function). Function ¢ is called a phase function (of order p1) if
it satisfies
(1) ¢ € C*(RZ x (R?\{O});R) is real-valued;
(2) ¢ is homogeneous w.r.t. £ of order u > 0, i.e. p(z,t&) = thre(z,§);
(3) IV gw(, )] # 0 for V(z,€) € R x (RY\{0}).

There are different ways to define the notion of phase functions, see [H6r03, §7.8], and
we don’t pursue diversity here. Note that n might not equal N, and most of the results
in holds also for the case n # N. Here we consider phases of order p, instead of just

22
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order 1, because in §5 and §7] we do encounter phases of order 2. The condition p > 0 is
indispensable.

In contrast with , in it is not sure that integrating first w.r.t = (or &) can
guarantee it’s integrable. Instead, we study

lim I (u) := lim [ €?@g(z, &)y (ef)u(x)dz dE, (3.3)

e—0t e—0t

where x is a function in Cg°(R™) with x(0) = 1. We show that the limit (3.3|) exists and its
value is independent of the choice of .

THEOREM 3.2. Assume m € R, 0 € S™(R} x Rév) and ¢ is a phase function of order
w. Fiz a function x € C°(R™) with x(0) = 1. Assume either u € C°(R"™), or u € . (R")
and 0%¢(x, &) is tempered w.r.t. x for any o. Then the limit exists and its value is
independent of the choice of x, and it equals to

/eW(x’é)LT (a(sc, f)u(m)) dzx d€,
when integer T > (m + N)/p where L is given in Lemma[3.4)

The proof Theorem we fist do some preparation.

LEMMA 3.3. Assume x € C°(R™) and let € € R. There exists a constant C' independent
of € such that

102 (x(e€))| < C(g)~lel.

PROOF. Because x € C°(R™), there exists a fixed constant C' such that x(e£) = 0 when
le(€)] > C. When |e(§)] > C, x(e€) =0 so 8?()((65)) = 0; when |e(§)| < C, we have

108 (x(€€) | = le™|9g x(e€)] < (€)™ sup |Og x| = cleel.

We arrive at the conclusion. O

LEMMA 3.4. Assume ¢ is a phase function ¢ of order p, and 0%¢(x,&) is tempered
w.r.t. © for any a. Then there exists an first order linear differential operator

L =aj(z,8)0; +bj(z,8)0; + c(x,§)
such that 1tL(ei‘P(ap”g)) = @8 and for any fized w0, aj(zo,-) € S7H, bj(xg,-) € S*H,
c(xo, ) € S7TF, and aj,bj, c are tempered functions of x variable.

Here (*Lf, g) := (f, Lg), where the integral is w.r.t. (x,£), and f,g € C3°. 'L is call the
transpose of L, e.g. *(V¢) = — V.

ProOOF OF LEMMA 3.4l We write V¢ = ¢, and Vep = ¢ for short. Fix a x €
C°(RY) with x = 1 in a neighborhood of 0. Construct

Dy + <£>2905 ) Df
0] + (€)|ee|?

M= (1— ()22 +x(8).

We mention several facts about M:

e First, M is well-defined. Note that the denominator |p,|> + (€)|¢e|® > |¢a|® +
lpe|? # 0 when (z,€) € R? x (Rév\{O}), and the point & = 0 has been cutoff by
1 —x, so M is always well-defined;

e Second, away from & = 0, (0, ) € S¥, p¢(xo, ) € S*71, the denominator(zo, -) €
S2H

e Third, Me'#(®8) = (1 — x)e'?(®8) 4 yei?(@8) = gip(@L)
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The transpose of M is the desired operator. Indeed, it can be checked that, when x is
fixed,

M = (1—x)S "0, + (1 — x)S'H0 + (1 — x)S™H + x(). (3.4)
The proof is complete. O

REMARK 3.1. Here S7#0, is a shorthand of a € C*° such that a;0,,; for some a(wo, ) €
S7#. Readers should note that is somehow misleading because the coefficients might
not be bounded w.r.t. z, e.g. ‘M = 110,,. However, they must be tempered, and these
tempered growth will be balanced by the rapid decay of u, The notations in wouldn’t
hurt.

PRrROOF OF THEOREM [3.2] Choose L according to Lemma [3.4] then
() = [ (D7) o(a,€)x(e€)u(e) drd
= /ei‘P(w’g)LT(a(x,S)X(ef)u(x)) dz d€. (3.5)

Readers should note that the transpose of L is realized by the classical integration by parts
(nothing fancy here), and it is the presence of x(e£) that cancels the boundary terms and
makes the integration by parts applicable.

The conditions “a; € S7H, b; € S1=F cec S in Lemmagive us

LY (o(z,&)x(e€)u(2))

= ((aj(@,€)s, +b;(2, )0, + e(2,€))" (o2, ) x(€)u(x))

= 2{: 54¢4aH%1*uHBM*u014aF45Daga?(U(x’g)xfeg)u(m))
la+B|<T

_ Z SIB\*MTagag (o(z, &)x(ef)u(z))

la+B|<T

= 3 3 a0 o2, )0 [x(e€)u(x))

la+B|<T B'+B8"=8

= > s (of o(a, 907 x(e6)Ju(x)

lo+B|<T p'+B"=p

= > Y Y o o o (w00 [x(c))08 u(w).

|a+8|<T B'+6"=B o/ +a'" =a

The term 8? ! [x(€€)] is the only term that depends on e. Hence, by Lemma we can have

LT (0(2, ) x(e)u(x))]

< YooY oo IFlo e e R
|a+B|<T B'+8"=P o/ +a' =

< O™ (RY),

where the constant C' is independent of e. Then T is chosen to be larger than (m + N)/pu,
the integrand in (3.5]) is bounded by a absolutely integral function. Therefore, according
to LDCT, the limit lim, ,o+ Ic(u) exists. Readers may think where we used the condition
w>0.
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We also show that the limit is independent of x. Fix a T > (m + N)/u, then by (3.5))
we have

lim I(u) = lim [ €L (0(2,€)x(€)u(z)) dz dg
= /eicp(:c,ﬁ) lilr(I)l+ LT(J(aj,ﬁ)X(eg)u(x)) dzd¢ (thanks to LDCT)

:/ @8 [T (5 (z, €)u(x)) dz €, (3.6)

which implies lim,_,g+ I¢(u) is independent of x. The proof is complete. O

Readers may think about if the framework can be generalized to symbols in
Now let’s summarize the definition of oscillatory integrals.

m
pyS°

DEFINITION 3.5 (Oscillatory integral). For any m € R, any o € S™(R? x Rév), and
any phase function ¢ of order p, and either u € C°(R"™), or u € . (R"™) and 05¢(x,§) is
tempered w.r.t. x for any «, the integral

I(u) = /ei‘p(x’f)a(x,g)u(x) dzd¢

is defined as

I(u) == lim [ ?@g(z, ) x(ef)u(x)dz de, (3.7)

e—0Tt

where the result is independent of x, as long as x € C2° and x(0) = 1. The limit equals

I<u>—/ PO LT (o(x, €pu(r)) da d

when integer 7" > (m + N)/u, where L is given in Lemma

In many cases we will meet oscillatory integrals involving parameters.

LEMMA 3.6. For any o € S™(R;' x Rj? x Rév), and any phase function @ of order
p, and for either u € C(RY x RY?), or u € S (R3' x RY?) and O,
w.r.t. (x,y) for any a, the integral

I(u)(y) = / P10y, €)u(z, y) da dg (3.8)

is a well-defined oscillatory integral, and I: . (R™) — #(R™) bounded. Moreover, we
have

() ® o(z, &) is tempered

5o W) = [ 5 00,y ule. ) da de.

/ I(u)(y) dy = / @V g (2, y, Eulz, y) d dy dé.

We omit the proof. The take-home message of Lemma is that oscillatory integrals
can have parameters, and there are much freedom to put operations w.r.t. y inside the
integration I(u)(y).

Now we go back to WDOs and its kernel. We have intuitively claimed that the kernel
of T, is of the form

K(x,w:/ @€ (2, €) de.
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Note that this object has variables (z,y), so a proper candidate of test functions should be
w(z,y) € .. We choose w(z,y) = u(y)v(x) where u,v € ., then formally we should have
y)-§

(Koo u) = [ Dol guy)ole) dedydg = (Tru,0).
The integral above is exactly an example of Lemma [3.6] so it is a well-defined oscillatory
integral. Now the kernel of a DO can be defined.

DEFINITION 3.7 (Kernel). Assume m € R and o € 8™, and T, is the corresponding
WDO. The kernel of T, is defined as a map:

Ky:we SR™M) — [(Kyw) = (277)_”/ =)o (5, ) w(x,y) dedy dé | € C.

When z # y, we write K,(z,y) as

K, (z,y) = (27) / @D (2, €) de. (3.9)

The well-definedness of Definition is guaranteed by Lemma

REMARK 3.2. From (3.9), we know that when m < —N, K, is a well-defined bounded
function for any (z,y) because

K| < / o (2, )] dé < /<s>mdg <0< too

This implies when the order of ¢ is small enough, there should hold some type of bound-
edness for T,, and we will cover this in However when m > —N, only when x # y the
kernel K, can be expressed as (3.9).

LEMMA 3.8. Under the assumption of Definition[3.7, we have
(Ko, u(y)o(z)) = (Tou, v).

We omit the proof.

LEMMA 3.9. Under the assumption of Definition |3.7, when x # y, K, is C* smooth
Moreover, for T large enough, we have

|Ko(z,y)| < Crlz —y[™, |o—y|> 1

PROOF. For any fixed point (z,y) with x # y, we show that K, is C°° at this point.
Fix a function y € C° satisfying x = 0 in a small neighborhood U of the diagonal {z = y}
and y = 1 in the interior of the complement of U. We can shrink U such that for any = # y,
x(z,y) = 1. For any w € ., we have

(00 (K,), w) = / D€ (2, E)w(z, y) de dy dE.

Apply the operator L to ¢/(®=¥)¢ and integrate by parts, we obtain

@k = (2 [ (ZE DT (e 0,)) g o,
which implies
(ko) (o) = [ e (T P (€00, 6))

It can be checked that when T is large enough, the integral above will be absolutely inte-
grable, and is of the order |x—y|~7 for T large enough. Therefore, K, € C®(R?"\{z = y}),
and K satisfies the desired decay. O
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By Lemma we see that K(z,y) behave nicely when off the diagonal, thanks to the
notion of oscillatory integrals. However, on the diagonal, K (z,y) might still be ill-defined.
See Example

EXAMPLE 3.10. The kernel corresponding to the identity operator (symbol = 1) is the
distribution 0(z — y). This is because

(K,v®u) = (Thu,v) = (u,v) = /u(:v)v(:v) dz

which gives K(x,y) = 0(z — y).

ExAMPLE 3.11. The kernel corresponding to Dy (symbol = &;) is D16(x — y). This is
because

(K,v®u) = (Diu,v) /Dlu dx—/(S x —y)Diu(y)v(x) dz dy

= /Dy1 Ju(y)v(z)dzdy = /Dlé(azy)u(y)v(x) dx dy
D15:C— )U® >

which gives K(z,y) = D16(xz — y). Besides, readers may also have tried another way to
compute the kernel and get a zero result: when x # y
(z —y) - Deyo

Ko,y = @) [ et ag = m [ (42

= (2n)" / ei(x—y)'f(wf(&) d¢ = 0.
|z —yl?
This result is technically correct (because D1d(z —y) = 0 when x # y), but is not complete:
it cannot speak about the behavior of K on the diagonal. This example told us, none of the
methods is the best one to get most accurate expression for a kernel, sometimes we need to
do complicated and delicate computations.

) ()6 g

3.2. Oscillatory integrals - Type I1

We know the Fourier transform of a constant function is the ¢ function and so the
inverse Fourier transform of the § function should be the constant, namely,

/ @V EQrde ~ 1. (3.10)

This integral can be regarded as the I(u) defined in Lemma where the symbol and the
u are both constant 1. However, this is not covered by Lemma because 1 ¢ .. The
map [ in Lemma is defined on .. Now by using duality arguments we shall generalize
it from .¥ to ST.

Let 0 € S™ and v € ., so Tyu € .. Let f € ST°, then f is a smooth tempered
function, so (T,u, f) is meaningful and

(Tyu. f) = lim (Tyu. x(e)])

holds for any x € C¢°. Expanding the integral, we have

(Tou, f) = lim [ @40 (2, u(y) f(2)x(ex) dz dy dE

e—0t
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= lim [ V0 (z, &)\ (e uly) f(z)x(ex) dz dy dE

e—0t

= tim [ u()( [ 40,6 f(con(c) drde) dy

e—0t

This inspired us to define (3.10) as

lim [ e @€y (ex)y(e€) d dE.

e—0t

More generally, we can generalize Definition [3.5] as follows.

DEFINITION 3.12 (Oscillatory integral). For any m € R and p > 0, any o € SgL(RN),
and any phase function ¢ € C®°(RN\{0}) of order i (real-valued, ¢(f) = t*¢(f), and

Vop(0) # 0 when 0 # 0) satisfying
o)
I= / g () do

the integral

is defined as

I:= lim [ e¥9Do(0)x(eh)db, (3.12)

e—0t

where the result is independent of x, as long as x € C2° and x(0) = 1. The limit equals

[ / O LT ((9)) o (3.13)

when T'> (m + N)/(p + p — 1), where L is given in Lemma below.
REMARK 3.3. The space S;n(RN) is defined as
m(pNY ._ comNVY). |9 m—pla
Sy (RY) = {p € CXRY); [0%0(0)] < (6)" "1},
See [AGO07, §1.8.1] for more details. Also, the formula (3.9) in the definition of the kernel

is meaningful now.

LEMMA 3.13. Under the condition in Definition there exists an first order linear
differential operator
L =b;(0)0, + c(0)
such that tL(eW(Q)) = ¢ ¢ suppb;, and b; € ST, c € S™H, and in a small neighbor-
hood of 6 = 0 there holds b=0 and c = 1.

PrROOF. We write Voo = ¢y for short. Fix a y € C2°(R™) with x = 1 in a neighborhood
of 0. Construct

g - Dy (0).

M := (1 -x(0)) e + x(¢

We mention several facts about M:

e First, M is well-defined. Note that the denominator |pg|? # 0 when 6 € RV\{0},

and the point 8 = 0 has been cutoff by 1 — x, so M is always well-defined;
e Second, away from 6 = 0, @y € S*#71;
o Third, Me®) = (1 — x)e?®) 4 yei#(0) = ¢iv0),
The transpose of M is the desired operator. Indeed, it can be checked that, when x is
fixed,
"M = (1-x)S""3 + (1= x)5™" + x(0).

The proof is complete. U
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Readers may compare Lemma [3.13] with Lemma [3.4]
LEMMA 3.14. Assume L is chosen as in Lemma and o € S;"(RN), then
LT (0(0))| < () orn DT,

The proof is left as an exercise. Combining Lemmas and we obtain a result
similar to Theorem [3.2

THEOREM 3.15. Assume m € R and p > 0, 0 € Sm(RN) and p € C®(RM\{0}) is a
phase function of order u. Fiz a function x € C2°(R™) wzth x(0) = 1. Then the limit ( -
erists and its value is independent of the choice of x, and it equals to

/ O LT (5(6)) do,
when T > (m+ N)/(p+ pu — 1) where T is given in Lemma|[3.13

The proof is similar to that of Theorem The generalized definition of the oscillatory
integral can handle more cases. One of the examples is as follows.

LEMMA 3.16. The following equality holds in oscillatory sense,

/ et dz de = (2m)".
R2n

PROOF. We shall regard (x, &) as the 6 in Definition then this phase function - £
is of order 2. One can also check that V, ¢ (7 -§) # 0 when (x,§) # 0. We choose the
cutoff function as x(ex)x(e£) where x € C° with x(0) = 1, then

/e“'f dz df:: lim /eim'fx(ex)x(eg) drd¢ = El_i:%l+ /(/ ey (z) dzx) - x(€2¢) d¢

(2m)"/? Jim / x(€2¢) d¢ = (2m)"/? / (=€) d¢é  (LDCT)

= (2m)" (0)
The case for e ¢ is similar. Note that all of the integrals above are usual integral besides
the first one on the LHS. O

The following result will be useful.

LEMMA 3.17. The following equality holds in oscillatory sense,
/R% e el dp de = (£i) o (2m) a6,
Proor. We have
/ et epeeB dpde = / (£Dg)™ (eF4) P dw dé¢
= / e (F D) (€7) dar dg = () / o (6%) da de.

It can be check that g (€P) = B1/(B — a)!€F~* when a < f3, and = 0 otherwise. Hence,
when o < 8 we have

/e:tix-fxagﬁ dz d¢ = (ii)'o“ﬂ!/(ﬁ —a)! / eiifcfgﬁ—a dx dé€. (3.14)

When a # [, we can continue

[t avag= [ pie(et ) asag =0 [e#epie () dede <o
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Therefore, when « # 3, we have
/ N eFetpeel da de = 0. (3.15)
When a = 3, by Lemma ie can continue as follows,
/2n eF T Epeh dg de = (:ti)O‘loz!/eim'E dz d¢ = (£0)al(27)".
The proof is Cfmplete. O
REMARK 3.4. The space S;”(RN) is defined as

m Ny . comNYy . « m—pla
SPRY) = {p € C=(RY); [0%0(0)| S (6)™ 71}
See [AGO7, §1.8.1] for more details. Also, the formula (3.9)) in the definition of the kernel

is meaningful now.
We can generalize Lemma [3.16

LEMMA 3.18. Assume m € R and f € SJ*(R") (see Remark with p+2 > 1. The

following equality holds in oscillatory sense,
/R () dadg = (27)" (0).

REMARK 3.5. Lemma [3.18] indicates the the “inverse Fourier transform” is indeed the
inverse of “Fourier transform”.

PROOF. We only show the case +ix - £&. The condition on f guarantees the integral is
well-defined, see Definition By Taylor’s expansion we have

n 1
f(z)=f(0)+ ijgj(:n), where g;(x) := / Oy, f(tx), dt.
j=1 0

SO
/eil“ff(:c) dzdé = /e“f[f(o) +Z:ngj(a:)]dxd§
j=1
= f(O)/e”c'5 dz d£+Z/D§j(e“'5)gj(a:) dx d¢
j=1
= (20" £0) = 3 [ ¢Dg, (0,(w)
j=1
= (2m)" £(0).
The proof is complete. O
Exercise

EXERCISE 3.1. Check that the !M given in (3.4) satisfies (3.4)). Hint: utilize the second
fact about M to facilitate the derivation.

EXERCISE 3.2. Prove Lemma [3.141



CHAPTER 4

Stationary phase lemmas

The stationary phase lemmas is a useful tools for computing certain asymptotics. Some
useful references are [DS99, §5], [Esk11, §19.3], [H6r03, §7.7], [Zwo12, §3].
From time to time in the lecture we will encounter oscillatory integrals of the form

I(\) = /ei’\so(x)a(x) dz (4.1)

where ¢ is a phase function of some order and a is a symbol (|9%a(€)| < (€)™ 181). In §3| we
have introduced some schemes to make I(\) well-defined. Now we focus on the asymptotics
of I(\) with respect to A — 400 where ¢ satisfies certain conditions.

When ¢ is linear, i.e. p(x) = p-x for certain fixed vector p # 0, there is no critical point
of ¢ (|[Ve| = |p| # 0). In this case we call ¢ non-stationary. For the non-stationary case,
the asymptotics of I is straightforward:

I(}\) _ /eikp.ma(l,) dr = / (p)\-|;‘);)N(ei)\p'a:) a(x) dx

— ixpr( Dy —Ny—
_ ) N/ekp ( pr VN (aa)) dz < [p| VA N/ S Cp0Pa(s)da
=N

<[pl N AN / (@)™ N de < AN,

provided N is large enough. This means that [ e*P%a(x)dx is of rapid decay w.r.t. A.
The gradient of ¢ has been put in the denominator in the derivation above, so the

method will not be applicable when the phase function contains critical points. In this case

we call the phase stationary. In this chapter we devote ourselves into the stationary case.

4.1. A simple case

To help readers understand the method of stationary phase, we start with a simple case
where the phase is stationary. To that end, we need to do some preparations.

4.1.1. Preliminaries. We need the Taylor’s expansion. Suppose f € CN+1(R™; C),
then we have that

fa)= 3 (@) o) - (e~ wo)?

[5]<N

(410—330)(S ! _ \N(é o
TEEEIND PRk /0(1 DN (@F) (2o + ta — wo))dt.  (4.2)

6| =N+1

The proof of (4.2]) can be found in most of the calculus textbook and we omit it here.
Secondly, for a measurable function u in R", as long as 0% € L'(R") for |a| < n + 1,
then @ exists and there exists a constant C' depending only on the dimension n such that

lallin <C D 0%l iggny- (4.3)
o <n+1

31
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ProoFr. We have
/ [a(6)] dg = / (€)™l ()] de < Csupl©)™ ()]
<C ), Caswle®a(Ol<Cu D, sup|F{O"u}()]

loo|<n+1 || <n+1

<Cn Y 0%l pign).

la|<n+1
We arrive at the conclusion. ([
We also need the following transformation. For a fixed non-degenerate, symmetric,
real-valued square matrix (), we have
oHiTsen Q
" [det Q72

Here the non-degeneracy condition of () means the determinant det @ # 0.

FleF@0/2)(¢) FQTIEE)/2. (4.4)

PROOF. We have
FeHIP ) = (ny 2 [

_ /2Tl / il gy

n

eimt i /2 gy — (o) ~n/2FIER /2 / HileFER/2 g,

n

By standard Cauchy’s integral theorem we can have

+m . 2 .
/ e:i:wc dx:ﬁeizw/ll’

—00

so we can continue,

]:{eisz/Q}(f) — ﬂ,fn/2e$i|£|2/2(\/%eiig)n — eii%n€$i\§|2/2' (45)
We left the computation from (4.5) to (4.4) as an exercise. O

4.1.2. A simple case. Now we study the quadratic case in R

LEMMA 4.1. Assume a € C°(R) with a(0) # 0. Fiz an arbitrary integer N € N. Then
for the integral I(\):

I\ = / ei’\xz/Qa(x) dz,
R
there holds

I\ = <2;> v ¢’

@) signifies e
where a'V) signifies 5.

INE]

> AL(5) @ @+00 N S sl @

!
0<jen 7 j<2N+4

PROOF. By the Plancherel theorem (which claims (f,g) = (f,§)) we have

i

) = / e 2a(z) do = / (N2 Fexra(g) de
U2 /e—*fha(g) de, (hi=Ah),
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Using (4.2) to expand I()\) w.r.t. h at h =0, we obtain

[ ra /’”” -y ace)ac
hN+1/ / 1_t N %)N-‘rle*@tha‘(g)d{dt’

Zh] / F{a®D}(€) dé + OV / €2+24(¢)] de)

7=0
N o
(27r)1/2(1)7h] ,
=5 O i o)+ 00N F B ) (4)
=
o (2m) 2 ) N1 )
:Zﬁa (0) + O(h > a9 )

i
o

j<2N+4

Note that we used (4.3). Combining the computations and changing h back to A™!, we
arrive at (4.6). The proof is complete. O

From this very short proof we extract the main steps:

(1) use Plancherel theorem to turn X into A~! in the exponent;
(2) expand the integral w.r.t. h := A~! at h = 0 with integral-type remainder;
(3) estimate the remainder using (4.3)).

4.2. Lemma Statements

We are ready to state the following main results in this chapter.

THEOREM 4.2. Let n € NT be the dimension. We consider the oscillatory integral I(\):
) = / N@a—w0)20) /20 (i 3) da,

where (Qx,vy) signifies (Qx)Ty as matriz multiplication. Fiz two arbitrary integers M,
N €N, and we assume

e () is a non-degenerate, symmetric, real-valued matrix;

e for each ), a(-;\) € C"F2NH3(R™: C);

e for each A, a(-;\) € CM(R™;C), and Yo : |a| < M, there exists A-dependent
constants Cpr.o(X) > 0 such that Vo € R™ there holds

0%a(z — 20; )| < Cara(A)(z)2Mn—1=lel,

Then the integral 1(\) is well-defined in the oscillatory integral sense, and we have

I\ = (2;)”/ ’Z;ﬁs;f/z > E <<Q_12?’D>>] (a(;\))e=zq

|
0<j<n I’
oA 2N YT sup (0% 0)]) @3)
la|<n+2N+3 B(@o1)

_ 0%a(z — 2z0; M)
)\ ><||z<:Msu 2N =1l ) A — 400,
«
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where B(xzg,1) stands for the ball centered at xo with radius 1, and sgnQ stands for the
difference between the number of positive eigenvalues and the number of negative eigenvalues
of the matriz Q).

REMARK 4.1. In contrast to many other versions of the stationary phase lemma, here
we don’t require a to be compactly supported. Instead, some other boundedness conditions
are imposed, which makes the oscillatory integral well-defined.

REMARK 4.2. Eq. (4.8)) is not an asymptotics w.r.t. j, but is rather w.r.t. A\. To get
enough terms w.r.t. j, one could choose M be large enough first, and then check if a satisfies
the requirements of the theorem.

REMARK 4.3. The function a is allowed to be dependent on A, hence the expression (4.8|)
is an asymptotic expansion only when 0%a(x; \) doesn’t increase significantly as A — +o0.

REMARK 4.4. The integers M and N in Theorem shall be chosen properly to serve
for one’s own purposes. For example, if one cares more about the decaying behavior w.r.t. A,
then the M can be set to [n/2] + N + 1. However, if one is dealing with these functions a
which doesn’t have good decaying behavior at the infinity, then one could set M to be large
enough such that (z)?="=1-1l can dominate d“a, with the cost that we should demand
of more smoothness of a(z).

REMARK 4.5. The unit ball B(zo, 1) involved in the term supg,, 1y [|0a| can be changed
to other bounded domains containing xy. But one should be careful that when the chosen
domain has a very smaller radius, the underlying coefficients of the O(-) term will be larger
accordingly.

If chosen M = n + 2N + 3, Theorem [4.2] will be simplified as follows.

PROPOSITION 4.3. Let n € NT be the dimension. We consider the oscillatory integral
I(\):

o) = / M@a—20)2-20) /2 \) dar,

where (Qx,y) signifies (Qx)"y as matriz multiplication. Fiz an integer N € N, and we
assume

e () is a non-degenerate, symmetric, real-valued matriz;
e for each A, a(:;\) € C"P2NT3(R™,C), and Va : |a] < n+ 2N + 3, there emists
A-dependent constants Cn po(X) > 0 such that Vo € R™ there holds

10%a(x — 20; )| < ONpa(N) (@)2V+2, (4.9)
Then I(X) is well-defined in the oscillatory integral sense, and as X — +00 we have

= ()" et 5 A (LY e

[det Q72 2= ]!

|0%a(x — zo; A
n+4N+5—|c|

+ (’)()f%*N*l Z sup

. @10)
la|<nt2N+3 ZER" (@) )

Proposition can be extended to a more general case where the phase function is not
quadratic.

THEOREM 4.4 (Stationary phase lemma [Ma20a]). We consider the oscillatory integral
I(\):

I(\) = /n @ g(z) de.
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For an arbitrary integer N € N, assume
e a ¢ C"PNE3(R™: C) with > lal<nt2n+3 SUPRn [0%a] < +o00;
o © € C"P2NF6(R™: R) with > ja|<n+2N-+6 SUPRn [0%p| < +00;
e 1 is the only critical point of p(x) on suppa(x), i.e., ¢(xo) = Ve(zg) = 0,
wz(x) # 0 for x # xo;
e the Hessian g, (xo) := [8:;’9],275‘;0’6(;1:0)]?’,6:1 satisfies det gy (20) # 0.

Then I(X) is well-defined in the oscillatory integral sense, and as A\ — +00 we have

97\ /2 pire(z0)+i] sgn o (o) N ,
I(\) < \ ) et oo (7)1 (a(xo) +;ag(mo)/\ )

+ O(A*%*Nfl X Z sup |0%al x Z sup [0%¢l), (4.11))
la|<n+2N+3 R la|<nt+2N+6 &

for some functions aj, 1 <j < N.
REMARK 4.6. Proposition 4.3]is a special case of Theorem where
p(x) = (Q(z — x0), ¥ — 10)/2,

which guarantees . (xg) = Q.

In one-dimensional case, explicit expressions for these a;j(zg) are given in [Zwol2,
(3.4.11)], and the details are given in [Zwo12, Second proof of Theorem 3.11]. For explicit
expressions for these a;(zo) in higher dimension, readers may refer to [H6r03, Theorem
7.7.5] for details. In [Esk11, Lemma 19.3] there is also another routine to prove the station-
ary phase lemmas. [DS99, Chapter 5] by Dimassi and Sjostrand is also a good reference.
See also [Won89, §2.3 & §6.4].

4.3. Proofs of the results

We first prove the quadratic case. We shall follow the main steps stated at the end of
. 1]

PROOF OF THEOREM [£.2] We omit notationally the dependence of a on X until related
clarifications are needed. Without loss of generality we assume 29 = 0, and a(0) = 1. For
readers’ convenience we rewrite the expression of I here:

I()\):/ eM@TD 202 da.

Step 1: cutoff singularity of the phase function. According to the assumption on @,
we know there exists a decomposition Q = PAPT for certain orthogonal matrix P and
diagonal matrix A := (a;);1... n. Making change of variable y = PTz, we have

[_/ a(Py)eiAZ?:lajyﬂz/Qdy

= / R0 () f () dy + / A () fy)dy (det P =1)

n

= Jl + J2’ (412)

where f(y) := a(Py) and x € C°(R") is a cutoff function satisfying 0 < x <1 and xy =1
in a neighborhood of the origin. We will see:
J1 is rapidly decaying and Jo gives the desired asymptotics.
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Step 2: Jj is rapidly decaying. Noting that the neighborhoods of the origin is not
included in the support of the integrand in J;, we can estimate J; by using integration by
parts (in the oscillatory integral sense). For any integer M € N we have

=1/ Q;M‘? 1M (T %) [(1 - x() £(3)] dy

S [ 00 Gl )M [0 = @) )]

SaM Y Cursaly*M]0% (1 = x) f(9)l dy (4.13)

supp(1—x) la|<M

SATM(E Y sup [0%fl+ D CMoc/ . |1 =2M 00 f(y) dy)  (4.14)
=

o< 10<x<1} o] <M

SASD (s jral [ ) )| dy)
la|<M {0<x<1} {x=0}

) 9%a(y)|
5)\ M Sup |80¢a|+sup’—
IagM({0<X<1} Rn (y)2M7n717|a|)
— aa
S " { |2M 15 3| ol (4.15)
|a|<M

The inequality - is due to the fact that
_onM _
(Y 00wilul™) o= > Canalyl™Mo%,
1<j<n || <M
which can be derived by induction and we omit the details. Inequality (4.14]) is due to the
fact that 0“((1 — x)f) = 0%f in {x = 0}.
Step 3: J» and Plancherel theorem. We turn to Jo. Keep in mind that f(y) = a(Py)

and yf is compactly support and in C?T2N+3(R"). Here we analyze Jo by borrowing idea
from [Zwo12, First proof of Theorem 3.11]. First we use Plancherel theorem (which states

(f,9)=(f.9)),
Jy = / PR ) dy = | P Rm O 6 () de

_ (A)—n/Qﬂe%ailg ) /}'(5) d¢ (by (ED))
. | det Q|1/2 X Y&

2y e
TN Jdet Q)2

where we ignored the summation notation over j and the function J is defined by

J(1/A1/A X f), (4.16)

SJ h1

T ) = 2m) 2 [ et R ) dg (417)

Note that in (4.17)) we put the emphasis on the dependence of f on hy (i.e. the dependence
of a on )\). The smoothness of J w.r.t. hy is guaranteed by the L' of derivatives of f,
namely, we have the following claim whose justification will be clear in (4.20)),

VmeN, max ||0%f[[pigny < +00 = J(-, he, f) € C"(R).
la|<n+2m+1
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Step 4: Taylor’s expansion. We abbreviate Jp,, as 0. Expand J w.r.t. hy,

2
§jh1

O J(0, ha,xf) = 2m) ™2 [ 8 (™) |0 - XJ () d¢

R’I’L
2
& —,

—en 2 [ (5 STk

i20&j
— (20 [ TEF(€) dg = TH(0) = T (al(Py) oo
_ (%Pljpkjaglakl)’“a(m — A%a(0;1/hy),

. o2 . .
where T = 537, and A = 5(Q "), = (Q7'D, D) (recall that D = 1V is regarded
as vertical). We expand J w.r.t. its first argument using the Taylor series (|4.2]),

hk N+1 1
T(hhayxf) = D 57080 hay X ) + = /0 (L= - 0 LT (th ho, x ) dt
S !
hAk hN—f—l 1
= > (k') a(0;h2) + — /O(1—t)N-8{V+1J(th,h2,xf)dt. (4.18)
0<Ek<N ’ ’

Step 5: the remainder term. By invoking (4.17)), the remainder term in (4.18) can be
estimated as

hN+1 1 N1
e R AR e (NP
. 0

<ot [ | T (€ 1 bl dg
n J

< ONBNTE YT Call (05 (0cf (5 1/ h) ML ey -
|BI<2N+2

By using (4.3]), we can continue
hN+1 1 N N1
y 7 /0 (1 —=t)N -0, T I (th, he, x f) dt|

< OnhYHE YT 105 (e (5 1/ha)) | ey (4.19)
la|<n+1
|B]<2N+2

< ONPNTE YT 08 (e (5 1/h) | L ey
|| <n+2N+3
< CyhNT N sup 0%l 1/hg). (4.20)

la|<n+2N+3>PPX

Letting h = hg = 1/\ and combining (4.16)), (4.17), (4.18) and (4.20]), we obtain

2 n/2 e%sgn@ A7 <Q*1D D> J
g, (% N AT () (000
’ (A) rdethW];V j! ( 2i ) 0

+COvATETNTE N sup [9%a(5 ) (4.21)
la|<n+2N+3>HPPX
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Combining (4.21) with (4.12)), (4.15)), we have
92 n/2 Men Q —j -1p D J
I_( 7T) €4 Z)\<<Q ) >) a(o’)\)

A | det Q|/2 = 4! 2
n aOé . )\
+ @(Aff*N*l Z sup [0%a(-;\)]) + (’)()fM Z sup %),
|a|<n+2N+3 SupP X la|<M R™ <y>
which is (4.8). The proof is complete. ([

PROOF OF PROPOSITION 4.3 The statement of Proposition [£.3]is almost the same as
Theorem (4.2)), except that M is set to be n + 2N + 3. Hence, we set M :=n + 2N + 3,
then we have —M < —n/2 — N —1, so

M |0~ a%)\)\ M 10%a(y; A
A Z SuP y)2M—n—1-[a] =A Z Sup () 2n+2N+3)—n—1-]a]

lajl<M R la|<n+2N+3 K

—n/2—N—-1 |0%a(y; A
<A Z o (y)ynFAN+5—lal”

|a|<n+2N+3
Also, for the first remainder term in (4.8) we have
[0%a(y; )|
..
Z sup ‘8 CL(’)\)| S Cxo,n,N Z sup W

la|<n+2N+3 B(@o.1) la|<n+2N+3 YEB(@o,1)

0%a(y; A
oy T sp [ TalN)

o< TaN43 Rn <y>n+4N+5—|a\

Combining these with (4.8)), we arrive at (4.10]). The proof is complete. O
Based on Proposition now we prove the more general case.

PROOF OF THEOREM [£.4] Without loss of generality we assume zg = 0, ¢(0) = 0 and
a(0) = 1. Hence by the Taylor’s expansion (4.2]) we have

1
Z x]xk/ (1 —1t)Ojrp(ta)dt = 2 / (1 = t)ppg(tx)dt - x.
7,k<n
Note that [p;(0)| # 0 and |, (2)] is continuous on z (p € C?), thus there exists a positive
constant [r] such that |pze(z)| > |pz2(0)|/2 > 0 for all z € B(0,r). Fix a cutoff function
x € C°(R™) such that supp xy € B(0,r) and x = 1 in B(0,7/2). Hence:
e on B(0,7), matrix ¢, is non-degenerate;
e on suppa\B(0,7), |Ve(z)| is uniformly bounded away from 0.

Step 1: cutoff singularity of the phase function. We divide I into two parts

I(\) = /n(l - X(x))a(w)e““"(x) dz +/ X(:U)a(a:)emp(x) dz == I1 + I, (4.22)

n

and we will show that I; is rapidly decreasing w.r.t. A while I can be analyzed by using
Theorem 4.2
Step 2: I; is rapidly decaying. For Iy, denote L = E] 1 IV |28$j, where ¢, is short
Soz

for 0;;¢. Then ; Le“\w =™ and 'Lf = Z (IV |2) For any integer K < 2N +2, I;
can be easily estlmated as follows (which requires @ € C"HE+L(R") and p € C"HE+2(R™))

I =/ (1—x)a- ((in) "KLK eAe@) 4y
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_ (i)\)_n_K_l/ (tL)n-i—K—I—l((l _ X)a) . ei)\gp(ac) dz

=0T N 0% pagny), A — o0, K <2N+2. (4.23)
la|<n+-K+1

As mentioned before, due to the presence of 1 — x, the denominator |Ve|? in L keeps a
positive distance away from 0, guaranteeing that (*L)% ((1— x)a) is bounded and compactly
supported.

Step 3: Turn I into quadratic phase form (e.g. into “J5”). Now we turn to Is. Because
© € C%(R"), pzz(z) is symmetric and thus there exist orthogonal matrix P(z) and diagonal
matrix A(x) = (o;(x));=1,.. » such that

1
2/ (1 — t)pae(tz) dt = P(z)A(z)PT(z).
0

Especially we have P(0)A(0)PT(0) = ¢,,(0). Denote a; = aj(0) and n x n diagonal matrix
A := (aj)j=1,.. n for short. Thus

a;(z) a;(z)
Alzx) = A VY /A Set W
() ( a; )] 1, ( a; )J 1, n
Note that we can choose the support of x to be small enough such that, on supp x, a;(x)
doesn’t change sign, so oj(x)/a; will always be positive on supp x. This grants the use of
the square root operation.
Let us make the change of variable:

y = () :_< O‘J(g”)) PT(z) - . (4.24)
e j=1,n
Note that
p e O g ¢ 2N+ (4.25)
We have
1 1
o(z) = EazT [2/0 (1 — ) e (tz) dt] x = g7 [P(x)A(:E)PT(x)] T
= 5PT@) al - ([ A ([ 1P 0)
e [0V 2 P < O R 0 W (1Y A 2 W e R
J J
= S (Aw.)

We have ®(0) = 0. It is easy to check that g—f(O) = PT(0). From (4.24) it is clear that
there exists a inverse of ®, i.e. ¢ = ®~1. Note that x = ¢(®(z)) and

O c O o g ¢ OV, (4.26)
We have

X(6(y))a(p(y)) - eMMV/2 dg(y)

n

X(6()a((y))| det Vyo(y)| - e A9)/2 dy

n

I

/.
J
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— Fly)eMAvn/2 gy (4.27)
]Rn
where
fy) =x(¢(y)) - a(é(y)) - | det Vyo(y)]- (4.28)
Note that
b€ CMHANHL o OnANH2 L o omAaN+2, (4.29)

Step 4: apply Proposition From (4.28)) we know f is compactly supported, so the
condition (4.9) for f is verified straightforwardly. By using Proposition to (4.27)), we
can obtain

om\"/? elisenA A ((A7'D, D)\’
L) = () LA () 5(0)
A | det A|1/2 02N 3! 21

FOMTE N e YT sup|9° )
loj]<n+2N+3 K"

o \"/? eiiseni A7 ((A7'D, D) J
_<)\> |detA|1/20Z g!( 2 ) 1)

<IN
+ 02 N Z sup |0%al| x Z sup [0%¢|). (4.30)
laj<nt2nN+3 K" la|<nt+2N+6 X

It can be checked that sgn A = sgn ¢,,(0) and det A = det ¢, (0).

Step 5: the leading term. We are now almost obtained (4.11]) except for the explicit
computation of the leading term in (4.30)). From the equality x = ¢(®(x)) we know [ =
Vy0(®(z)) - Vo @(z). Formula (4.24) implies ®(0) = 0 and V,®(0) = PT(0), hence,

det V,,$(0) = det V,¢(®(0)) = (det V,8(0)) " = (det PT(0)) " = 1.

Therefore,

£(0) = x(¢(0)) - a(¢(0)) - | det Vy¢(0)| = x(0) - a(0) = a(0). (4.31)
Combining (4.22)), (4.23), (4.30) and (4.31)), we arrive at the conclusion. O
Exercise

EXERCISE 4.1. Use (4.5) to derive (4.4)).

€2
EXERCISE 4.2. Show details about how to derive (4.7]) from fe_%hd(ﬁ) d¢.
EXERCISE 4.3. (optional) In (4.17)), if we instead set

2
&ih

J(hxf) = (2m) ™2 / e X F(E:1/h) d,

R"

and later on expand J w.r.t. h at h = 0, will the computations following (4.17)) still give
the desired result? Explain the reason briefly.

EXERCISE 4.4. Assume a € C2°(R?") and denote a Lebesgue integral

I(y,m; ) = (QW)”/ e 8a(x 4y, & +n) do dé.
RQn

(1) fix y and 7, and use Proposition to find the asymptotic expansion of I w.r.t. A
as A — +o0;

(2) write down the first 1 4+ n terms (the leading term + the first order terms) of the
asymptotic expansion.
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Hint: z-& = %<Q(l’,£), (z,€)) with Q = <I 0 I”S"), where (z, &) is treated as a vertical
nxn

vector.

EXERCISE 4.5. Assume symbol a € S™(R"™ x R™) and denote an oscillatory integral

T = @m)7" [ e ate +y.6 -+ n) dode.

(1) is I well-defined? If it is, should the cutoff function x (cf. (3.12)) be chosen to
cutoff £ alone using x(e£), or cutoff = alone using y(ex), or cutoff both x and ¢
together using x(ex, €€)?

(2) use Proposition 4.3| to find the asymptotic expansion of I w.r.t. (n) as |n| — +oo;

(3) write down the first 1 + n terms (the leading term + the first order terms) of the
asymptotic expansion.

(4) compare with the result in Exercise and revise Remark
Hint: Perform the change of variable £ — (n)¢.



CHAPTER 5

Symbolic calculus of YDOs

In this chapter we show certain symbolic calculus of WDOs. We need some preparations.

LEMMA 5.1. Assume a, b € R such that |a] > 1 and |b| > 1, then for every m € R there
exists a constant independent of a, b such that

[(ah)™ < Cuna)™ )™, Ja] 21, 0] > 1.]

PrOOF. When m > 0, we have
(ab)™ = (1 + |ab])™ < (1 + |a[)™ (1 +[b))™ < (&)™ (b)™
When m < 0, because |al, |b] > 1, we have

ab)™ ~ 1 1 — (a\™(p\™ @@ |m|
b= T < Japer O ey

S (@)™ (o)™
We proved the result. O

LEMMA 5.2 (Peetre’s inequality). For Va,b € R™ and Vm € R, there exists a constant
Chn, independent of a and b such that

(a +b)™ < Cpo(a)™(b)I™.

ProoF. For any a, b € R", we have
1+la—bf <1+ |a| +[b] < (14 ]af) - (1+[b]).

Note that (a) ~ 1 + |al, so we can conclude Lemma for the case where m > 0.
When m < 0, we use the fact:

1+af <14fa—b]+ b < (1+|a—0b])- (1+]b])
= (L+a—0b) > (1+a])- (L+ o)~
Now assume m < 0, we have
(14 la =)™ < (14 Jal)™ - (14 [B)) ™™ = (1 + [a)™ (1 + [p])™.
The proof is complete. O
5.1. Composition of YDOs

Assume a € S™ and b € S™2. For notational convenience we denote T' = T, o Ty, thus
for any ¢ € ., we have

To = (2m)~" / '@ (2, &) Typly) dy dé
— (2m)" / =2 (27r) / HEDE o, €)b(y, ) dy dE) (=) dz

= (27r)”/ei(“z)'”((%r)”/eiy'fa(:r,n + &bz +y,n) dyd&) p(z) dzdn

42
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= (2" [ el pp(z) de (1)
where c is defined as the oscillatory integral
el i= (2m) " [ €W aan+ b + ) dy de. (52)

If we could show ¢ € S™ for certain m, then it implies the composition of WDOs is still
a WDO. We use the stationary phase lemma under oscillatory integrals developed in §4] to
show this expectation.

To show ¢ € 5™, the task boils down to show the asymptotics of ¢ and its derivatives
w.r.t. |n|, thus we set A := (1), so

c(x,n) = (2m)7"A" / e a(a, A7+ €)b(x +y,m) dy g, where 7 := /().
To make better correspondence with notations in §4 we set
ciﬂ,"](?]? 5) = a(w, /\(ﬁ + f))b(.’ﬂ + Y, 77)7

thus

c(a,m) = (20) A / QWM 20, (1 €)d(y,£),

R2n
where (y, &) is treated as a 2n-dim vertical vector and

Q= (_OI —()1) (= Q'=Q, sgnQ =0, and detQ = £1).

In cpp(y, ), we regard (x,n) as irrelevant parameters make the following correspondence:

function | variable | fixed point | in total | dimension
In Prop. 4.3] a x xo a(z — xp) n
at here Cxn (ya é) (y()a 50) =0 Czn (y, f) 2n

To use Proposition the only thing left to check is , namely, to check
Vo, B¢ o + 6] < 20+ 2N +3,  1050) (ca(y,)] S ONinas(N{(y, )"V 2.
For [¢] > 2, we have

050Z (Cauny.€))| = 10502 [, A7 + €))b(z + y,n)]|
< Ca g N0l A7 + )] - 1050(x + y, )]
< Cap AN (@ + €)™ =Pl ()2,

Because || < 1, when [£| > 2 we can have | +£| > 1. Recall that A > 1. Hence when
|€] > 2, we can use Lemma to continue the computation as follows,

10907 (Cap(y, €))| < Ca gAY 7181 (5 4 ) a1l (ym
< CopA™ (i + €™ PAM2 (A= () = A~ (V)
< Co g™ m2(g)m= I8l mi=I8ll - (Lemma [.2)
< CopA™ M2 (gm0, (5.5)

We emphasize that (5.5]) holds when |£]| > 2, and the constant C, 3 is uniform for z, y and
n. But due to the continuity, (5.5 actually holds for all £ € R™. Hence, the condition ([5.4))
is satisfied when 2N + 2 > my, with Cn . 8(A) = Ca gA™ ™2 s0 we can use Proposition

directly on (|5.3) to obtain
c(xz,n) = (277)”)\”/

R2n

(5.4)

eiA(Q(y,é)y(y,ﬁ)V?an(y7 €)d(y, §)
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L fam\" A7 (@7 Dy, Do)\’
= (2m)7"A" % <A> > j!( 2 =n(0:0)

0<j<N

10907 (can(.€))|
. el

+ A" x oA N Z .
|a|+|8|<2n+2N+3 (U:E)ER?™

A~ J
- Z ——(Dy - V)’ '¢.n(0,0) + QAN HEmatma)
0<j<N !

Aled e
- Z al —D 85 (%n(% ))’(y,g):(o,o)-f-(f)()\ N-1+ma+ 2) (5.6)
la|]<N )

o
= > A = Nelova(z, Af) Dgb(x,n) + O (AN LTmitm2)
Ot.

la|<N
1 (0% (0% — IV — m m
=Y a8,7a(gc,n)pxb(gc,n)Jrcf)(A N=lfmatms), (5.7)
lo|<N
In (5.6) we used
. j a
(Dy ) VEV = (Dy1a£1 -t Dyngfn Z D 85 (5.8)
lo]=7

By letting N to be large enough, (5.7 implies the following inequality
0505 c(a,m)| S (my™ 21l (5.9)

holds when |a| = |3| = 0. To show the case when a and/or [ are nonzero, we compute
a qf _ —nynqaqf —iAy- ~
0y 0 c(x,n) = (2m) " \"03 0, /e Y€a(xz, M7 + €))b(z 4 y,n) dy dé
~ Ay o8 / e 402 0 alw, A7 + €))07" 0 bz + y,n) dy g, (5.10)

Note that A = 7. Then we repeat the long computation (with the help of Proposition
as in , and this can gives for all nonzero a and . The rigorous computation is
left as a exercise. Therefore, ¢ € S™11m2,

By letting N to be large enough, implies

1
C(IL’J]) ~ Z Jaga(man)ng(%ﬁ),

«

We proved the following result:

THEOREM 5.3. Assume mi, mo € R, a € S™ and b € S™2. Then T, o T, € ¥™1tm2,
Denote the symbol of Ty 0T}, as , then aftb € S™ ™2 gnd

a#b T f Z ‘YI 5Dg(b( g))‘y:x

REMARK 5.1. We deliberately write 0;' (a(m, 17)) ‘n=§ instead of ag‘a(m, €), to avoid pos-
sible computation mistakes. The same for b.
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REMARK 5.2. When symbol a is of the form a(z,£) = 3, <, da(®)§* Where dq € C>
are all bounded, or when symbol b(z,§) is independent of z-variable, the asymptotics in
Theorem stops in finite term and the asymptotic is “exact”: we can replace ‘~’ by
‘=". This can be seen from the expression of ¢(z,m). See also Exercise and
[Mar02, Remark 2.6.9].

From Theorem we know, if a € S™ and b € S™2, then
1 1
a#tb = ab+ S™ M2l — gb 4 =Vea- Vib+ Smitma=2 — qp 4 “{a, b} + Sgmitme=2 " (511)

5.2. Reduction of variables

As we have seen in (2.5 that

(T, ) = (u, (20)" / 05 (2, €)p(z) dar dE).

In practice we may encounter ¥DOs of the form

/ Dy, €)ply) dy dé

where the symbol a depends not only on = but also on y, e.g. in §5.3| we shall see ¥YDOs
possessing this type of symbols. We have the following result.

THEOREM 5.4. Assume a € S™(RExRYXRY), then there exists symbol a’ € S™(Ry xRE)
such that

Topla) = (20" [0 awy e dyds, Voe SRY,  (512)
and this Ty takes the following as its kernel:
K(ay) = (2m) " [ 0 afa,y,) de.

Moreover, a’ has the asymptotics

1 a Qo
a'(z,§) ~ QDygn (a(@,y, M) |(ym)=(2.0)-

«

If (5.12)) holds, we will have
/6“:”‘?4)‘%’(96,5)@(3/) dyd¢ = /ei(z_y)'ga(%y,f)w(y) dy dg
and so we can expect
/ei(r—y)fa/(x’ é—) dé— — /6i($—y)'§a($’ Y, 5) dg

to hold in the oscillatory integral sense. By changing y to y+ x, we see the LHS is a Fourier
transform,

Feld (2,6)}(y) = (2m) "2 / W Ea(a,y + 2,6)dE,

SO

a(z,n) = (277)_71/6@'” dy'/e_iy’ga(xaerx,&) d¢

— (2m) / e EN (e, y 1 2, €) dy dé
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= (2m)™" / e Wea(x,y+x,& + ) dyde

= (2m)7"\" / e~ Ea(z,y + 2, M€+ 7)) dy de,
where again \ := (n) and 7 := n/(n). The rigorous proof we go by first set a’ as in this way,

and then prove d’ is a symbol of order m.

ProOOF OF THEOREM [5.4] We set
/(o) = (2m) "N [ Ealay -+ NE ) dyde,

where \ := (n) and 7 := n/(n). Following the arguments preceding this proof, we can show
that o’ satisfies . It’s left to show a’ satisfies the asymptotics, which will automatically
show a’ € S™.

To show a’ satisfies the asymptotics, we use the stationary phase lemma in a similar

manner as in We set

a:}c,n(yaf) = CL(:L’,:E + Y, >\(£ + 77))7
thus

a'(z,n) = (27)7"A" / eMRWOWwE)2q, L (y €)d(y,¢), (5.13)
RQn

where y and € is treated as horizontal vector and
Q= (_OI _OI> (= Q'=0Q, sgnQ =0, and detQ = +1).
For [£| > 2, we have
1050 (a0 (4. )| = 1050 [alz, = +y, A& +7))]|
< CapAN(O5 0/ a) (.2 + y. M€+ 1)
< Co g N(E + 7))
< Co g™ 18l +iym=18 - (Lemma 1))
< Ca gAML (N e (N), Lemma B2)
< CapX™ (€)™ 1.
Hence, the condition is satisfied when 2N 42 > m, with Cn 5 0. 8(A) = Co gA™, so we
can use Proposition directly on to obtain

o (@) = (2m) A" / AW 20, (4 ) d(y,€)
R2TL

n —j —1 J
_ (27T)—n/\n > <2/<T> Z AT (<Q D(yvg)’D(yvf)>> cwm(0,0)

— ! 2i
0<j<N

|8aaﬁ(cxn(y7f))’
+ AT x QAT sup S INTE T3]
|a+5|<§2;+2N+3(y,£)6R2” ((y, ) anesial=ldl

A~ : CNelim
= Y =Dy Vel (0,00 + O(A VT
0<j<N 77

)\_‘Oé' [eatet —N—14m
- Z TDyas (Cam¥: ) w6)=0,0) + O(AN ™)
lal<N
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A~ lel o
= ol DYOg (alz,y + 2, A + 1)) |(e)=(0,0) + O(A V™)
la|<N
1 - - m
= D D08 (alwy + 2.6+ 1) o0 + O
lo| <N
1 - - m
- Z aDgag(a(xvyué))‘(y,{):(x,n)+O(/\ N=1 ) (514)
la<N

Due to the same logic as in (5.9)-(5.10)), we can let N to be large enough, and by doing
so, (5.14) can implies ¢’ € S™ and

1 a Q&
c(z,m) ~ Z gDy 73 (a(2,9, ) .e)=(@m)>

«

The proof is complete. O
Theorem [5.4] completes the proof of Lemma [2.19

5.3. The Adjoint and transpose

We define the adjoint and transpose of the YDO 7T, acting on Schwartz functions as

follows,
adjoint T : (T u,v) := (u, Tyv),

5.15
transpose ‘T, :  (*T,u,v) := (u, Tyv), (5.15)

where u,v € 7.

THEOREM 5.5. Assume a(xz,&) € S™. The T and ‘T, defined in (5.15) ewist uniquely,
and both are WDOs. There exist symbols a* and ‘a of the same order as a such that T} = Ty»
and 'T, = Ti,. Moreover, we have the asymptotics

1
a*($,§) ~ ZEDSB?E('%'7€)7

—_ 1)l
(e, &) ~ 3 TV pooga(e, o)

al

«

REMARK 5.3. The computation (2.5) gives an very efficient intuitive way to compute
the asymptotics of a*.

PROOF. Here we only show the proof for a*, and that of ‘a is left as an exercise.
Step 1. Existence. As explained at the beginning of for u,v € ¥ we have

(u, T,v) = ((2m)™™ / e W=0EG(z, €)u(z) dz dE, v)

so if we define a mapping 1" as
Tuly) = (20) " [ 0 a(a, ula) do e

then (Tu,v) := (u,Tyv). Also, this T is of the form (5.12)), so by Theorem [5.4] we know T
is a ¥DO.

Step 2. Uniqueness. Assume there are two adjoint of T', and we denote them as T}
and T, respectively. Then for any u,v € % we can conclude

(Thu,v) = (u, Tyv) = (Tou,v) = ((T1 — Tz)u,v) = 0.
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Hence, (Th — T2)u = 0 for any v € . and so T} = Tb.
Step 3. Asymptotics. Theorem suggests that the symbol of T, denoted as a*,
satisfies the asymptotics:

* 1 aqo (= 1 aqa—
a*(z,&) ~ Z aDy 8,7 (a(y, n))\(ym):(x@ = Z JDI 85 a(x,§).
The proof is complete. (Il

Exercise

EXERCISE 5.1. Use stationary phase lemmas to complete the estimate in 8?85 c(x,n) in
(5.10). Hint: mimic the computations in (5.7)).

EXERCISE 5.2. Assume a € S™ and b € S™2. Utilize Theorem [5.3] to show that
[T, Ty] € mitme=1 where [T,,Ty) := T, T, — TyT, is called the commutator of T, and T,
and T,7T} is a shorthand of the composition T, o Tj.

EXERCISE 5.3. Prove the statement in Remark In Theorem assume a(x,§) =
2 laj<m, da(2)€™ where do € C°° are all bounded, or assume b = b(¢), then show that

1
cla,m) = Y —05alw,n)DZb(x,m)
lajl<N

for some finite integer N. Hint: substitute the expressions of a or b into (5.2) and use
Lemma B.18

EXERCISE 5.4. Mimic the proof for a* in Theorem [5.5| to prove the result for ‘a.

EXERCISE 5.5. Let T, Ty be two WDOs. Show that (77)* = Th and (ThT)* = T5T7.
Here “T™” stands for taking the adjoint of 7T'.



CHAPTER 6

Parametrix and Boundedness of YDOs

In this chapter we investigate the the parametrix and boundedness of YDOs, both of
which heavily utilize symbolic calculus. The notion of parametrix can be understood as the
approximate inverse, or the inverse module C'*° an operator. For a homogeneous polynomial
T() := Z‘M:m an&®, its corresponding operator 1" := T'(D) is a YDO.

To find the inverse, a typical idea is to design S(§) := 1/T(§) and let S := S(D).
Inaccurately this seems to give us ST = I where I is the identity operator, which is
(inaccurately) because by Theorem [5.3| (and Remark we have

symbol of ST = 3 iag (T(€)D2(5(6)) = T(€)S(€) = 1.

Unfortunately, this is wrong, because 1/7'(€) has singularities when T'(§) = 0. And due to
this reason, .S may not be a VDO so Theorem is not applicable here.

However, the S can be saved if we cutoft the singularity. Specifically, fix a x € Cg° with
x(0) = 1 and we re-design S as S(&§) := (1 — x(£))/T(§) and once again let S := S(D). It
is straightforward that this new S(£) is a symbol and so S is a YDO. Again, by Theorem

(and Remark we have
symbol of ST = Z iag (T(€))Dg(5(¢)) =T(£)S(€)

[0}

=T(§)(1 = x(£))/T(¢)
=1-x(9)-
It is also true that the symbol of T'S = 1 — x(&). Note that x(D) € ¥~°°, so we conclude
ST=T+0"®, TS=1I+40

This inspires us to introduce the notion of parametrix.

6.1. Parametrix

In what follows we use [ to signify the identity operator unless otherwise stated.

DEFINITION 6.1 (Parametrix). Assume m € R and T' € ¥™. If there exists a ¥DO §
such that ST — I € W=°°, we call S a left parametriz of T. If T'S — I € W7°°, we call S a
right parametriz of T. We call S a parametriz of T if it is both a left and a right parametrix.

The notion of left and right parametrix is somewhat redundant.

LEMMA 6.2. Assume both S and T both WDOs. If S is a left (right) parametriz of T,
and T has a right (left) parametriz, then S is also a right (left) parametriz of T.

PROOF. We only prove the left-case. There exists S’ such that T'S’ = I + ¥~°°. From
ST =1+ ¥~ we have (ST)S' = 5"+ VU~ = S(T5"),s0 8"+ ¥~>° = S(I + ¥~°), which
gives S = S’ + ¥~°°. Therefore,

TS=TS"+0 ) =TS+ U =4+ VX4V =] P>
which implies S is a right parametrix of T'. ([

49
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The parametrix of a DO is not always exists. And in contrast with the notion of
inverse of an operator, when parametrices exist, they are not unique.

LEMMA 6.3. Assume S is a parametriz of T, and R € W™°°, then S + R is also a
parametriz of T.

The proof is left as an exercise. One of the condition that guarantees the existence of
parametrix is the ellipticity.

DEFINITION 6.4 (Ellipticity). Assume m € R and a € S™. We call a and also its
corresponding WDO T, elliptic when there exist fixed positive constants C' and R such that

la(z,6)| > C{O)™,  when x € R", [¢| > R.|

There is an equivalent definition for the ellipticity of a symbol.

LEMMA 6.5. Assume m € R and a € S™. The ellipticity condition for a is equivalent
to the fact that there exist two positive constants C and D such that

la(z, )] > C{E™ — D™, Yo, £ € R™ (6.1)

PROOF. Assume a € S™ is elliptic, then there are constants C', R > 0 such that
la(z,£)|/()™ = C, V[¢] = R,
so for any positive constant D we have
la(z,6)[/(&)™ = C — D)™, (6.2)
for V|¢| > R. If we set D := C(R), then
V[ <R, Cl)<D = C-D(™ <0,

so (6.2)) holds for both [¢| > R and |{| < R. This gives (6.1).
On the other hand, from (6.1)) it is easy to see a is elliptic. O

We will show that

‘Ellipticity & Eparametrix.‘

First, we show the ellipticity condition gives the existence of parametrices.

THEOREM 6.6 (Ellipticity = parametrix). Assume m € R and a € S™ and a is elliptic,
then T, has a parametriz.

PrROOF. Here we use the notation o(7") to represent the symbol of a YDO T, the
well-definedness of the mapping o is guaranteed by Lemma [2.11] We denote T}, as A for
simplicity. Fix a cutoff function x € C2°(R"™) such that x(£) = 1 when |{| < R and x(§) =0
when || > R+ 1, where the R is given in Definition

Step 1. Define by(z,§) = (1 — x(&))/a(z,§) and By := Tp,, then by is well-defined
because the denominator is nonzero in the support of 1 — y. Also, it can be checked that
by is a symbol of order —m (see Exercise [6.2)). Then according to Theorem [5.3, we have

0(ABy) =a(l —x)/a—ri=1—x—r;, forsome r €S '

Step 2. Define by (x,&) := (1 — x(€))/a(x, &) - r1(x,&) € S 1 and By := Tp,. Again,
according to Theorem [5.3] we have

0(A(Bo+ B1)) =0(ABy) +0(AB1) =1—x—r1+a(l —x)/ar1 —r2
=1—(1+7r)x —re, forsome ry€ S~2,
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Step 3. Define recursively b;(x,€) := (1—x(§))/a(z, &) -rj(x,£) € S™™ 7 and B; :=T,.
According to Theorem [5.3], we have
o(A(By+ -+ Bj)) =a(A(By+---+ Bj_1)) + 0(AB;)
=[1-Q+r+-+rj1)x—r]+al—x)/arj —rjn
=1—(1+r 4+ +rj)x—rjy1, forsome rjeS77h
Step 4. According to Theorem there exists b € S™™ such that b ~ Zj b;. Denote

B =T, so for any N € N there holds B = By+--- By +V " V=1 Hence we can compute
the symbol of AB as follows,

0(AB) = 0(A(By + - -- By + U~ N-1y)
= O'(A(BO 4. BN)) + O’(A\I/_m_N_l)
= 1= (l+r 4ty —ryvp + 5V =145V (6.3)

where the last equal sign is due to x € S7° and ry4; € S~™V~1. Due to the arbitrariness
of N, (6.3]) implies that

AB—1€ U™,
so B is right parametrix of A. By repeating steps 1-4 we can also show A has a right
parametrix, so by Lemma [6.2] we conclude that B is a parametrix of A. O

Second, we show the existence of parametrices gives the ellipticity.

THEOREM 6.7 (Parametrix = ellipticity). Assumem € R and a € S™ and T, has either
a right parametriz or a left parametriz, then T, is elliptic.

PROOF. Assume Ty is the right parametrix, then b is necessarily a symbol of order —m,
SO
o(T,Ty) =ab+S7Y, and o(T,T)) =c(I+ ¥ ) =1+ 5",
thus
ab=1+8"1+8>°=1+5"1
Therefore, when |{] is large enough
V(x,€) € R™, a(w,€)b(, &) — 1] < C{E)h
Therefore, (£) > C/2 is large enough, we can conclude

{Ia(%f)b(fvaf)l > 1/2

b(x, &) # 0 when (£) is large enough = la(@ O = 1/(2b(=, )D)-

This gives
la(z, )| = (§)™/2 when (§) > C/2,
so a is elliptic.
The proof for the left-case is similar. O

From Theorems & we see that the condition “T" has a right (left) parametrix”
in Lemma [6.2] can be lifted.

PROPOSITION 6.8. Assume both S and T are WDOs. If S is a left (right) parametriz of
T, then S is also a right (left) parametriz of T

PROOF. If S is a left (right) parametrix of 7', then by Theorem we know that T is
elliptic, so by Theorem we know T has a right (left) parametrix. Then Lemma [6.2] tells
us S is a right (left) parametrix of 7. O
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We recall that when T"is a WDO, T doesn’t increase the singular support of a distribution
(see Theorem [2.21)). Now if we know T is also elliptic, then 7" doesn’t decrease the singular
support.

LEMMA 6.9. Assume T is an elliptic WDO and u € &', then

’ sing supp(7'u) = sing supp u. ‘

Readers may compare Lemma [6.9] with Theorem [2.21

PRrROOF. Denote Tu = f, then Theorem [2.21] implies
sing supp(7T'u) C sing supp u.

Theorem implies T' possesses parametrices. Let S be a parametrix of T. Then we have
Sf=8Tu= I+ VY >®)u=u+C>?R"), so

sing supp u = sing supp(Sf) C sing supp f = sing supp(7T'u).
The proof is done. O
We will revisit the notion of parametrix and ellipticity in §9.1]

6.2. The L? boundedness

LEMMA 6.10 (Schur estimate). Assume K € L}, .(R*") and for ¢ € L}, .(R") we denote
To(x) == [pn K(z,y)e(y)dy. Also, denote

L := sup / |K(z,y)|dy, R:= sup / |K(x,y)| dz. (6.4)
zeR? n yeR” n
When L, R < +o0, for ¥p € [1,+00] and ¢ € LP(R™) we have
ITelr < L'PRYP| 0| 1o

PrROOF. When p = +o0 is trivial, we have

|IT¢|| L = esssup,| /K(m,y)go(y) dy| < esssupx/]K(x,y)]dy . esssupy\go(yﬂ

= Lfl¢]| =
When p = 1, we have

1Tl = H/K(x,y)w(y) dy|| 11 S/HK(ny)HLl!w(y)\dy

<R / o(y)|dy = Rllgllp:.

Now we assume 1 < p < +o0. Let p’ =p/(p—1),s01=1/p+1/p’. We have
T ()] S/!K(x,y)w(y)!dy—/!K(axy)!”p/!K(x,y)!l/p\so(y)ldy
< / K (,9) dy) 7 ( / K (@,y)ll()Pdy)'’" (by Holder’s ineq.)

<LV ( / K (2, 9)l[o(y) P dy) 7.

Hence,

Tl o < LV7'( / K (2, 9)llp()P dyda)'? < LV (R / ()P dy)'?

< LY RYP|l| 1.
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The proof is complete. [l

As already mentioned in Remark when the order m is small enough, T, possesses
certain types of boundedness.

LEMMA 6.11. In R", we assume m < —n and o € S™(R} x Rf), then the YDO
T,: LP(R™) — LP(R™) is bounded.

PROOF. Denote the kernel of T, as K, so

K(z,y) = (277)_"/ei(m_y)’50($,§) d¢.

Because o € §™ with m < —n, we know that integral above is absolutely integrable. This
means that K is a well-defined function in R?", especially, K is well-defined on the diagonal
{(z,z); € R"}. However, we remind the readers that the condition “m < —n” doesn’t
guarantee that K is also C™ on the diagonal (recall that Lemma tells us K is C*° off
diagonal). The value of K on R?" is uniformly bounded, because

K(z,y)] < (27) / lo(2,€)|dé < (2m)" / Clemde < C.

Because K is well-defined and uniformly bounded on R?", we can define the corre-
sponding L and R of it as in , and we can also enhance the estimate in Lemma as
follows,

K (z,y)| < Clz—y)™""', Vz,yeR",
which implies both L and R are finite. Because To(x) = [p. K(x,y)¢(y)dy, we can use
Lemma to conclude ||T,¢||rr < |l¢llze. The proof is complete. O

THEOREM 6.12 (L? boundedness). Assume symbol a € SV, then T,: L?>(R") — L?(R")
is bounded.

PRrROOF. Recall the definition for “a#b” in Theorem[5.3] To prove the result, it amounts
to find a suitable positive constant M such that for Vi € .,
ITapl7e < Mlgll7e & (M~ T;Tu)¢.9) 2 0.

Our strategy is: we try to find such a M so that M — 7T, can be represented as B*B for
some B so that
(M =T5Ta)p, ) = (B"Byp,¢) = (Bp, Be) > 0.
Step 1. Symbolic calculus. Because a € S°, we know |a(x, )| < C uniformly for some
C. Let
M = My + My, where M :=2sup|a(z,&)> + 1, (6.5)
R2n

and M> shall be determined later, and define
b(x,§) == v My — |a(z, §)|*.

It can be checked that b € S°. We use o(T) to signify the symbol of T. Then by Theorems
5.3 & 5.5 we have

o(TyTy) = |b]* + 571 = My — |a(2, > + 571,

and also
o(My = T;T,) = My — o(T;T,) = My — (Ja(z, )P + S71),
SO
o(TyTy) = o(My — Ty T,) + S
Hence

o(M —T:T,) = o(My + My — TXT,) = My + o (T3 Ty) + S,
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which implies
M —TiT,= My +T;T, — R, for some ¥DO Rec ¥~ 1.
Therefore it is equivalent to prove
(Mz +TyT, — R)p, ) = 0,

so we only need to prove
(Rp, ) < Mallol|7-. (6.6)

Step 2. To prove , we can do the following derivations:
(Rp,0) < Malpll7: <= [(Re,0) < Malpll7:
< |[Roll2llel e < Mallolf7a
< |[Rellrz < Maflollr2
< (R*Rp,¢) < M3|¢l7:
< |(R* Ry, 9)| < M3 oll72
< |[R Ryl 2 < M3lo]|rz-

We observe that
IR* Rtz < M3|lpllz = [|Rellze < M| z2. (6.7)

Step 3. Using iteratively, we can obtain (R*R)*R*R, ((R*R)*R*R)*(R*R)*R*R,
etc, and each time the order of the corresponding ¥DO decreases by at least 1. We will end
up with a ¥DO of order less than —n in finite time. And by Lemma that operator is
L?-bounded. Then we use to bring the boundedness back to R, so we arrive at

|IRoll 12 < Ma|l¢llr2, Yo e€.7.
This gives . The proof is complete. 0

As a corollary of Theorem we have the following H"* boundedness for any T € U™,

COROLLARY 6.13 (H™ boundedness). AssumeT € W™ then for any s € R, the mapping
T: HT™(R™) — H*(R") is bounded.

PROOF. Denote J := (I — A)'/2. Because T' € U™, we have J*TJ*~™ € ¥°. Hence
for any ¢ € .7(R™) we have
ITlls = (17Tl = | J*TT 7" T " | 2
< OI @l 2 = Clll s

By a density argument we can extend the result to any ¢ € H*T™. The proof is done. [

Theorem can be generalized to a more general case. The L?-boundedness results
are given in [Ho6r71,CV71,CV72]. Then A. Calderén and R. Vaillancourt generalized
their own result [CV71] in [CV72]. We comment that [Hwa87] gives an elementary proof
of the results in [CV72|. Here we restate the main results in [CV71, CV 72| as follows.
Recall the symbol space S;T& defined in Definition @

THEOREM 6.14 (Calderén-Vaillancourt Theorem [CV71]). Let a € 5870(]1%2 x Rg; C),
then the WDO T, is bounded in L*(R™), and there exist constants C, N such that

Vo € L’(R"), |Topllrz < C max 050 allr<|¢ll2. (6.8)
la+B|<N



6.3. GARDING’S INEQUALITIES 55

THEOREM 6.15 (Generalized Calderén-Vaillancourt Theorem [CV72]). Leta € C*°(R2 x
Ry xRE;C), 0<p<d; <1(j=1,2) and M/n > $(61+02) — p. If there exists a constant
C such that ¥(z,y,§) € R} x RY x R,

9200 ala,y, ) < C(E) M 950la(a,y, )| < C(g) M Il ol

holds for all 0 < |B] < 2[n/2] 4+ 2 and 0 < |a;| < 2m; (j = 1,2) with m; being the least
integer satisfying m;(1 — ;) > bn/4, then the linear operator T, defined as

Tup(x) == (2m)™" //n . e Ea (2, y, €)ply) dy dE

is bounded from L*(R™) to L*(R") and ||Tu||p2— 12 < Cs, 5,.,mC for some constant Cs, 5,.p.

For simplicity, we summarize a easy-to-use L?-boundedness result as follows,

a < 3870 = ||Ta||L2—>L2 < 0.

For the LP-boundedness (1 < p < 400) result, readers may refer to [CMT78] (in French)
and [HL94|.

6.3. Garding’s inequalities

We use notation R f to signify the real-valued part of any object f. Recall the Sobolev
spaces H*P(R™) defined in Definition and the corresponding Sobolev norms ||| gm.»
and || gm. We denote J™ := (I — A)™? and J := J', namely, J™ takes (€)™ as its
symbol. It can be checked that J™ € W™, Jmi jmz — jmitm2  J ig self-adjoint, and JO is
the identity operator.

6.3.1. Garding’s Inequality.

DEFINITION 6.16 (Strongly elliptic). Let m € R. A symbol a is said to be strongly
elliptic of order 2m, if a € S?™ and if there exist fixed positive constants C, R such that

Ra(z,&) > C(€)*™, V|¢| > R,

holds.

Similar to Lemma there is an equivalent definition for the strong ellipticity of a
symbol.

LEMMA 6.17. Assume m € R and a € S*™. The strong ellipticity condition for a is
equivalent to the fact that there exist two positive constants C' and D such that

Ra(z, &) > CE)?™ — D)™ v ¢ e R™ (6.9)

PROOF. Assume a € S?™ is strongly elliptic, then there are constants C, R > 0 such
that
Ra(x,€)/(€)*™ > C, V¢ > R,

so for any positive constant D we have
Ra(x,€)/(€)"" = C = D)™, (6.10)
for V|| > R. Also, because a is a symbol of order 2m, for some M > 0 we have,
[Ra(z, €)/(6)*™ < la(z,9)|/(€)*" <M = Ra(z,8)/()" > -M, VEeR"
We set D to be large enough such that

M > EIlE%(C_ D™, eg D:=(C+M)(R),
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then (6.10) holds for both |¢| > R and |¢| < R. This gives (6.9).
On the other hand, from it is easy to see a is strongly elliptic. ([l

We are ready for the Garding’s Inequality.

THEOREM 6.18 (Garding’s inequality). Assume m € R and the symbol a € S*™ is
strongly elliptic. Then we can find a positive constant C' and a positive constant Cs for
every reals numbers s > % such that

R(Tap, ) 2 Cllelim — Csllollim-s, Vo € S (R"). (6.11)

REMARK 6.1. When a(z, &) = (£)?™, then a is strongly elliptic and

R(Tap, ¢) = R(J ™0, 0) = R, J™0) = ||| Fm,

which implies (6.11)). Theorem implies that even if a symbol is not of the form (£)?™
but is only strongly elliptic of order 2m, then T, still possesses some positiveness.

PROOF OF THEOREM [6.18] Let’s denote the symbol of T)f as a*, then it can be checked
that

R(Tap, ) = (T (410 P: P)-

Step 1. When m = 0. Because a is strongly elliptic and m = 0, by Lemma [6.17| and

Theorem [B.5] we have

1
§(a+a*):%a+r20—D<£>_1+r:C—r,

where 7 is a generic symbol in S™!. This makes it legal to define a Symbolm be SO by

1/2

bz, €) = (%(a—ka*) O (6.12)

Note that b is real-valued. Then by Theorems and we have (symbolic calculus)
- 1
V'#b=0b+S N+ S =+ S = Slata)—Ctr+ S

SO

1
§(a+a*) —C=b"#b+r,

where 7 is a generic symbol in S~!. Therefore,

. C
R(Top, ) = (T1(arany#:9) = (T Top, ) + 5 el 72 + (R, )

C C
= Tl + 5 lIgllZe + (Re,0) > Sl + (B, 0), (6.13)
for some R € U1, We have
[(Rp, )| = |(RIV2TY 20, JY2 J7120)| = [(JY2RIVA(J720), J712y))|

< N2RIVA(T20) | pallll 12 < CNT 20N pallpl -1/ (6.14)

= C'llel -1/ (6.15)

Note that in (6.14]) we used the facts J¥/2RJY2 € ¥ and operators in U° are L2-bounded.
Combining (6.15) with (6.13) we arrive at
C

R(Tap, ) = 5||@H%2 —C'llell 12 (6.16)

1See Exercise
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Step 2. When m # 0. Let Ty = J ™1, J ™ for certain a’ € SY. Then it can checked
that there exist C', D > 0 so that

Ra'(x,6) > C — D)L, Va, & eR™ (6.17)

Hence according to Lemma a’ is strongly elliptic, so by using the result in Step 1 we
can have

R(Tap, ) =R Ty J"p, ) = R(Tw J "¢, J"p)

> 1™ llze = ClT™ el G-

Qn|Q

= 5”80”%{’” - Ol”@”?{m—l/Q' (618)

Step 3. From Theorem we have

1 -
el Fm-1/2 < mll@l!%m + D2l 3pms,

for any D > 0. Set D to be small enough and substitute the inequality above into (6.16])
and (6.18)), we arrive at the conclusion. O

Garding’s Inequality is used for giving the existence and uniqueness of the following
type equation:

(Ty + M)u = f.

Let m > 1/2 and s = m, and assume a € S?™ is strongly elliptic symbol, then

Cllellim = Xollellz: < R(Tap,9), Vo € S (RY)
for some constant Ay > 0, then for all A > A9, we can conclude

Cllelliz < Cllelm < R(Ta + N, @) = R(p, (Ty + N)e) < llell2l(T7 + Nl 2,
which leads to a coercive condition:
Cllellzz < (TG + Al 2.

Combining this with the Lax-Milgram theorem we can conclude that:

COROLLARY 6.19. Assume m > 1/2 and a € S*™ is strongly elliptic. There exists a
constant Ao such that when any X\ > Mo, for any f € L*(R") there exists a unique weak
solution u € L?(R™) satisfying the equation

(To + Nu=f.

6.3.2. Sharp Géarding’s Inequality. In the proof of Theorem later on, we see
that having a strictly positive lower bound for Ra is critical, and the method in that proof
will fail if the lower bound reduces to zero. However, when Ra > 0, one can still obtain
some lower bound of R(7T,p, ¢) and that result is called sharp Gading’s inequality.

THEOREM 6.20 (Sharp Garding’s Inequality). For a symbol a € S*™ satisfying

[ Ra(z,€) >0, Y[¢[ > R,| (6.19)

we can find a positive constant C such that

R(Top, @) = —Cllo5m-r/2, Ve € F(R™).
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The prove (6.20)), we introduce the wave packet transform. The wave packet transform
W: L2(R") — L?(R™ x R") is defined as (see [Chel7, Theorem 4.2.3])

Wu(z, &) 1= cn (€)Yl OE O o ), (6.20)
and its conjugate in terms of the L?-inner product is given by,
W*F(x) = ¢, / (OO, P ) de, (6.21)

where the constant ¢,, = 2~"/47r=37/4 and (f *4 g) signifies [ f(z —y)g(y) dy.

LEMMA 6.21. The wave packet transform W defined in (6.20) is a bounded linear oper-
ator.

PROOF. The linearity is obvious.
To show the boundedness, we compute ||[Wul|3, (R xR")’

W ey = [ 1€ O ) az g
- [1er / FLEO O )2 - a(n)2dnde  (Plancherel theorem)
= [(Jierarie @ity pag) - i an
= [([1arie e @7z ag) Jag P ay
:/(/<§>—n/2e—<§>ln—£2/2 ag) - i) dn

< [ ([t jamPans [l

= ||U”%2(Rn)-

The proof is complete. O

PROOF OF THEOREM [6.20l similar to Proof of Theorem|[6.18] the general cases w.r.t. m
stem from the special case where m = 1/2. Let’s assume m = 1/2 for the time being and
iy 19 3ho RlTu ) % ol

The condition can be replaced by “Ra(z,£) > 0, V¢ € R™”, and this is because
we can fix some x € C’;’O(R”;R”) (thus x € S7°°) satisfying x(§) > sup(,¢) Ra(z, §) when
{|¢] < R}, and then we can obtain Ra(z,&) + x(§) > 0, V¢ € R™. Note that R(xp, ¢) 2
—|l¢ll72 because x € S~>°. Therefore, from now on we assume Ra(z,£) > 0, V€ € R™.

Denote as b(z, &) the symbol of W*RaW. The operator Tj := W*RaW is defined by
Tyo(x) = W*(Ra - Wo)(x) for ¢ € #(R™). We have

Typ(a) = [(©/* [ elem e @l o Ra(y, W iply.  dy de
~ / gyl / ie-y)E= (-3 Rq (. €)(£)/ / (=) E=Ol—2 1) 45 dy de
/ / e / e~ O == He=ul®) () 2Ry, €) dy) (=) dz dg
// ie=2€5(p. 2, €)p(z) dzde, (6.22)
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where a(z, z,€) = (£)"/? [ e~ (©y= ey Ra(y, €) dy. It can be checked that @ € h 12
By [Chel7, Theorem 2.4.1], we have the asymptotic expansion
b(x,€) = a(x, z,€) +Ze] w8+, TES ), (6.23)
7j=1

where e;(x,§) = 0., D¢;a(w, 2,§)|.=.. Note that e; belongs to 51/1/2, not SY 19> and this
is why we expand a to the second order. The symbols e; is purely imaginary because a is
real.

For a(x,z,£), we have

LY R / ~2(0)le- y‘( — ) a(pr + (1 — p)y.€)/2dy

|a|=2
— Ra(z, )+ ("2 R / 200 (y ) 9P a(pr + (1 - p)y.€)/2dy
|a|=2
=Ra(z, &)+, 1" eS (6.24)

The last equal sign in is due to the following computation,
(€772 [ 20— ) Ol + (1 - p)y.€)/24]
S (o [Py - 2] () ay
= [ (g ) ) )

— / 2P|y dy < ©

for some positive constant C'.
Combining (6.23]) and (6.24)), we obtain

b(z,€) = Ra(z,€) + > ez, 6) +7, ¢ € 511{12/2, rest (6.25)
j=1
and thus .
(a+a")/2=0b(x,8 - e(x,&) —r, res , (6.26)
j=1

The r in (6.25)) and (6.26) are different from each other and are also different from the r in

(6.23]). Now we have

R(Tup, @) = [(Tup, ©) + (Tap, 0)1/2 = [(Tap, ) + (9, Ta)l/2 = (Tiasar) 205 ©)
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= (Top, 0) — (Te; 0, 0) — (Trp, @)
=Ra-Wo,We) — (Te; 0, ) — (Trp,0)

> —(Te;p,0) — (Trp,p)  (because Ra > 0)
= —R(Te; 0 0) = R(Trp, ) = =(Tie;4e5) 120, 9) = R(Trp, )
> —(Teyserya:#) — Cllgle, (6.27)

for some positive constant C. The L?-boundedness of operators whose symbol come from

S? 1/2 can be proved in a similar manner as in the proof of that of S, cf. [Chel17, Theorem
4.1.1] and [AGO7, Theorem 5.1].
Recall that e; € 5’11 7/12/2 and e; is purely imaginary, thus the principal symbol of Tie, +ei)/2

equals to zero and hence (e; + €})/2 € 53/12/2-

(Tiey se3y2:0) < Cllle (6.28)

Therefore,

for some positive constant C'.
Combining ([6.27)) and (6.28]), we arrive at the conclusion for the case m = 1/2. Based
on the result regarding m = 1/2, the proof of general cases become trivial. ([l

Exercise
EXERCISE 6.1. Prove Lemma [6.3]

EXERCISE 6.2. Assume m € R and a € S™ and a is elliptic. Fix a cutoff function
x € C®°(R") such that x(¢) = R when [£] <1 and x(§) = 0 when [¢| > R+ 1, where the R
comes from the definition of the ellipticity of a. Define ro(z, ) := (1 — x(§))/a(x,§). Prove
that rg € S,

EXERCISE 6.3. Prove the b(z,&) defined in (6.12]) is indeed a symbol and is of order 0.
Hint: use [AGO7, Lemma 2.1.1] or [Won14, Lemma 17.2].

EXERCISE 6.4. Prove (6.17)) is true.

EXERCISE 6.5. Assume the symbols a and b are elliptic. Show that 7,7, and T} are
also elliptic. Hint: utilize Lemma |6.5



CHAPTER 7

Semi-classical YDOs and its symbolic calculus

Semiclassical analysis shares lots of features with WDO theory, while also keeping some
of its own specialties. One of the application of semiclassical analysis is Carleman estimates.

7.1. Semi-classical YDOs
7.1.1. Symbol classes.

DEFINITION 7.1 (Order function). A measurable function m: R?*® — R is call an order
function if there exist constants C' > 0 and N € N such that

m(z1 — z9) < Clz1)Vm(z), Vz1,2 € R

The integer N is called the order of m.

Typically, we shall set z = (z,&) with x,& € R For any a, b € R, m(x, &) = (2)%(¢)°
are order functions with N = 2max{|al, |b|}. Specifically, (¢} is an order function of order
N, and note that this order function is independent of x. If mq, my are order functions
of order N7 and N respectively, then the product mimy is also an order function of order
N1 + Ns. This can be seen from the following computation:

(mlmQ)(Zl — 22) = ml(zl — 22) . mQ(Zl — 22) S C<z1>N1m1(z2) . <21)N2m2(22)
= C(21) M2 (mymg) (22).
DEFINITION 7.2 (Semiclassical symbol class). Let h € (0,1), § € [0,3] and m be an
order function with order N. For a(-;h) € C®(R?*"), we say a € Ss(m) with order N if

10%a(z; h)| < Coh ™1 m(z), Vze R

Define a family of seminorms
, el 0% a(z; h)|
la(-;h)|s5(m),e = lala == zselﬂlgn h-ol0Tm(z)’
and so the semiclassical symbol class S5(m) is given by
Ss(m) == {a(z; h) € C*°; V multi-index «, |a|q < +00}.
We abbreviate Ss(1) as S5 and Sp(1) as S.

Note that in contrast to the Kohn-Nirenberg symbol (cf. Definitions & , the
semiclassical symbol doesn’t gain decay w.r.t. its arguments after being differentiated.

We write a(-;h) = Og,(m)(f(h)) if for every multi-index «, there exist hg and a such
that |a|o < Cyf(h) holds for all h € (0, hg), namely,

a(:3h) = Ogymy (f(R)) & [0%a(-h)| S F(R)R™1m.

It can be checked that Va € Ss(m), we have f(h)a = Og,(m)(f(h)). For Ss(m) and a; €
Ss(m), we write a ~ 3, ha; if a — Z;‘V:o hWaj = Ogsm) (V1.

61
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LEMMA 7.3. Assume 0 < 6 < 3 and a € Ss(m) and a1 € Ss(m1), az € Ss(ma). Then
hDja € Ss(m) and ajas € Ss(mims).
PRrROOF. We can compute
0%(hDja)| = h|o°Feia| < Cuhh™0Uo+eiDm = O hh=0101=0m = C ht =0 R0y,
< hoCuh 0o,
Hence hDja € Ss(m). We omit the rest of the proof. O

DEFINITION 7.4 (Asymptotics). For symbol a, a; € Ss(m) (j = 0,1,---), we write
an~ >, h1=20)iq; in S5(m) if a — Z;V:o h1=2)ig; = Ogé(m)(h(l_%)(NH)) holds for every
n € N, namely,

N
a~ Z h(1725)jaj in Ss(m) < a= Z h(1725)jaj + hA=2)NFD G,
J J=0

Here h(1=20)(N+1) G5 (m) means h(1=20(N+Dp for some r € Ss5(m). The ag is called the
principal symbol of a.

The asymptotics is more about i than the Kohn-Nirenberg symbol which is more about
&. To avoid confusion, we would like to comment in advance that even though the definition
of asymptotics semiclassical symbol is in the form a ~ ag + h*2%a; + K122, + ... but
later we may see a be expressed as by + hby + h%by 4 ---, e.g. in . The difference is
that it is h2%/b; rather than b; itself that is in Ss5(m).

THEOREM 7.5. For Va; € Ss(m) (j =0,1,---), there always exists a € S5(m) such that
an~ Zj h(l_%)jaj.

PrOOF. We choose a cutoff function y € C°(R) satisfying xy =1in (—1,1),0 < x <1,
X is decreasing in the interval (1,2) and supp x C (—2,2). Note that we define x on the

whole real axis but will only use its definition on the positive real axis.
Step 1. Define

a:= Z x(A\jh)h(1=20)ig,
Jj=0
for some A; which shall be determined. Our scheme is to choose A\; > 0 properly (grows fast
enough) such that a will be well-defined at each point and satisfies Definition From the
construction of x it can be checked that

Vh>0,Vk >0, x(h)h(1720k < o(1=20)k (7.1)
Hence,
la| = | ZX()\jh)h(l_%)jaﬂ = | ZX()\jh)()\jh)(l—%)j()\jh)—(l—%)jhu—za)jaj|
Jj=0 Jj=0
<D 2/ ay,
J=0
and similarly,
0%al <Y 2/M\) (0% <Y Cal2/A) TP R0,
>0 >0
Step 2. For a specific «, we only need to choose {\j};>0 grow fast enough such that

> Cjal(2/Aj0) 72

Jj=0
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is finite, and one example is \;, = BC; N10=29)] Then using diagonal arguments we could

K]
choose a suitable set {\;} from {\;.};j>0. However, we want {\;} to grow even more
faster for our later use; particularly, to guarantee ([7.5)) is finite. To that end, for each fixed
multi-index o and non-negative integer M, we first choose {\j o, }j>0 to grpw fast enough

w.r.t. j such that

> Cirara2/Ajaan) 2V < oo,
320

Njam’ = Nja,m when M’ > M, (7.2)
N/ M > Nja,m when o > a,
then we choose
Aj = AjGigi )i
where (4,7, ,7) stands for the multi-index of which the value of every component is j. By

doing so, we are guaranteed that the sum Cjinr.a(2/2;)1729) is finite for every o and
M. Back to the estimate of |0%a|, we are guaranteed that a is well-defined and a € Ss(m).
It remains to show a ~ > h(1=20)iq; in S5(m).

Step 3. To analyze a — Zj\f: 0 hi aj, we use another trick similar to ,

Vh >0,k >0, |x(h)—1hr*<1. (7.3)

The verification of ((7.3]) is left as an exercise. By (7.1)) and (7.3)), for h € (0, hy) where
hy < 1 we have

N
0%(a =3 _h#ay)|

j=0
Nil i _osya 2 o8V (198 (4 _
+ 2 X)) G a5 RGN D00y (7.4)
3>0 J
N 4 9 '
S[Z )\§»1_26)(N+1_J)Cj,o¢ + Z Cj+N+1,o¢(Y)(1726)]] h(1726)(N+1)h76|a\m (7.5)
j=0 3>0 J

<Cy an RO~ZY N+ p=dlal

Here in ([7.4]) we used x(Ajh) < x(Aj—1h). Hence,

N
a— Z h(1—26)jaj — Osé(m)(h(l—%)(Nﬁ-l))‘
j=0

The proof is complete. O
7.1.2. Semiclassical pseudodifferential operators. Just as Kohn-Nirenberg sym-

bols, every semiclassical symbol produces an operator, and is semiclassical situation, these
operators are also described as quantizations of the corresponding symbols.
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DEFINITION 7.6 (Quantization). We quantize the symbol a(z, &) by means of (7.8]) for
vVt € [0,1]. And we also denote Standard quantization and Weyl quantization as in ([7.6)-

2.

(Standard quant.:)  a(z,hD)u := (27rh)_"/ei(x_y){/ha(x,{)u(y) dy d¢, (7.6)

Suly)dydg,  (7.7)

(Weyl quant.:) a“(z,hD)u := (27rh)_”/ei($_y)'5/ha(x2ﬂJ,

(General quant.:)  a¢(x, hD)u = (27rh)"/ei(zy)'5/ha(tx + (1 —t)y,§u(y)dy d&.
(7.8)

These operators defined above are called semiclassical pseudodifferential operators (abbre-
viated as S¥DOs). We denote the set of SYDO with symbols coming from Ss(m) as

Opy, (95(m)).-
According to Definition W we know that a“(z,hD) = a
ay(x,hD). Tt is trivial to see

aw.€) = f(x)g; & a(a,hD) = f(x)hD;.

We introduce the h-dependent Fourier transform.

(z,hD) and a(x,hD) =

1
2

DEFINITION 7.7. The semiclassical Fourier transform Fp, and its inverse ]:};1 are defined
as

Foul€) = (2mh) "2 / =i/ My (1) d, (7.9)

n

Filu(z) == (2mh) /2 / /My () de. (7.10)

n

It can be checked that

a(z, hD)u == F; {a(z, ) Fru(-)}. (7.11)

Formula ([7.11]) is one of the reason why the semiclassical Fourier transform shall defined as
in Definition [7.71

LEMMA 7.8. Assume 6 € R and a € Ss(m). Then for Vt € [0,1], we have that the
operator a; satisfies at(x,hD): S (R") = L (R™) and ai(z,hD): &' (R") = ' (R"), and
the mappings are bounded with norm depending on § and h, but uniformly on t.

PROOF. Let ¢ € (R™). We have

ar(z, hD)p(x) = (2nh) " / / Dtz 1 (1~ )y, & h)o(y) dy de.

The integrability of y is not a problem because ¢(y) is rapidly decay. For &, we should use
integration by parts to gain enough decay on £. Notice that % (e"(x_y)f/h) = ¢ile—v)&/h,

(3]
we denote L = %, then act L’f“ on e"@=¥)¢/h and use integration by parts, we will

end up in a integrand of order (¢)7"~! on ¢ and rapidly decay on y, thus integrable. Hence
we proved that ai(x,hD): /(R") — L®(R") for a € Ss(m). Adopt similar arguments
on z0%as(x,hD), we can obtain 20%as(x,hD): .#(R™) — L>®(R") for Va, 8. Therefore
ai(z,hD): Z(R") — . (R™). And the continuity of the operator can also be seen from the
arguments above.

The second result holds due to duality arguments. ([
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LEMMA 7.9. If symbol a is independent of &, i.e. a(x,§) = a(x), then
ai(z,hD)u(x) = a(x)u(z), Vte[0,1].

PRrROOF. It is enough to prove for u € .. When t = 1, we have

a1 (2, hD)u( (2mh)~ // Wz=v)&/h (2, )u(y) dy dé
= (2h)™" // @V h g ()u(y) dy de
= a(x)u(x)

We have
O (ar(z, hD)u(z)) = (2wh) ™" // !@=u)E/hg, (a(tz + (1 = t)y))u(y) dy d¢

= (2e) " [ [ @D~ y) Ve + (1 t)uly) dyd
~ (27h)” / Vee @9 otz + (1 — t)y)u(y) dy de

~ (2rh)™" // !y /h’div5 (Va(te + (1 — t)y)u(y)) dy d¢
=0.
We arrive at the conclusion. O

From Lemma and (7.8]) we know that if a(x,§) is either independent of £ or inde-
pendent of z, the quantized operator a;(x, hD) will be independent of t. Hence, for fixed
xz*, & € R", and denote [(z,§) := z* - x 4+ £* - £, then [;(z, hD) is independent of ¢, i.e.,

(@, hD) = 2" -2+ & - hD.| (7.12)

7.2. Composition of the standard quantizations

For a non-degenerate, symmetric, real-valued n x n matrix ), the quantization of the
exponential of quadratic forms is defined as the standard quantization (cf. (7.6)),

e (QRDAD) (1) — (97p) " / / a0 €/ (QEE) () dy d. (7.13)
R xR"™

Readers may compare ) with - The following lemma shows how to express
e3r(@hDAD)  The ezr <QhD hD > can be expanded by using stationary phase lemmas.

LEMMA 7.10. Assume @ is a non-degenerate, symmetric, real-valued n X n matriz.

We have eﬁ@h[m[)): S = L continuously. And when 0 < § < %, we have that

¢ 37 (QRD:RD) . Ss(m) — Ss(m), and the expression is

12 sgn Q
37 (QhD,hD) _ e
U = TGt QI n )2

The integral (7.14]) is defined in oscillatory sense. Moreover, when 0 < § < %, fora € Ss(m)
we have the asymptotics

/ 62_73.<Qily’y>a(x +y) dy. (7.14)

Lh (QkDD) ( QD D)) + h<1_26)<N+1)S5(m). (7.15)

Mz

Jj=0 '
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PRrOOF. For a non-degenerate, symmetric, real-valued n x n matrix ¢ we have (see
[Ma20c])
ei% sgn Q

[det Q172

For any measurable function a € ., as long as the right-hand-side of ([7.14]) is defined,
by the definition (7.13) we have

e37 (@RDD) () — (27p)~" / / (a0 €/h e 3QE0) 4 ) dy de
— (2mh) /2 / [(2mh) "2 / D€/ 3 (RE 4] a(y) dy
_ (2nh) "2 / [(2m) / e~ VRE Q80 e a(y) dy
= 2rh) " [ Oy - 2)/VR) - aly) dy

Y 6i§sgnQ O~y
= (27h) /Q/We 2 (@7 mDv=rlg(y) dy by (7.16)

Fles@a))(g) = e 5(Q7IEE) (7.16)

61% sgn Q
| det Q|1/2(2mh)n/2

We arrive at (7.14). From (7.17) and (4.8) it is easy to see that 229Bear (QhD:RD) . o _, [0
for Vo, 8, hence ezr(@QhDAD) . &y o continuously.

Now we use Proposition to estimate ([7.17) and to confirm that ¢35 (@D.AD) i deed
maps Ss(m) into itself. It is straightforward to check a satisfies the condition (4.9) with
CNnao = h=0lel. Denote the order of the symbol a as N, and choose the N in Proposition

to be N > N/2 — 1. From (7.17) and Proposition we have

ih(QhD hD) ({L’)

h—j (“‘Ql)lD D>>] a@) + O x Y |0%a(e + yi bl

/62<Qly’y>/2a(x +y)dy. (7.17)

= - Sup
. ]! 2 |0¢|§n+2N+3yER" <y>n+4N+5,|a|
QD D) >J N+1 o h—d\a|<y>1\7m(aj)
)+ (’) h wp
D, D) J ~
( DL afo) + O 3052349 sy ()22 ()
. yERn
D, D)
( : > z) + HA=2N+D =30+ O (1)) (7.18)
S <N
Now e2i (QhDhD) . . S5(m) — Ss(m) is justified by (7T8) and similar arguments also work

on 0%(e2 27 (QhD, hD> a). It can be checked that h/(QD, D) a = h1=20iSs5(m). Here f =
h(1720)i S5(m) means there exists a symbol g € Ss(m) such that f = h(1=20)Jg. Hence,
these leading terms matched with the stipulation in Deﬁnition From it seems we
didn’t obtain the expansion because the remainder term may surpass these leading terms
due to the factor A9t However, when § < 1/2, from we see that the order of
the remainder term goes higher as N goes larger (while when § = 1/2 this doesn’t happen),
and when we set N to be large enough, these leading terms can exposed themselves from
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the rest and will not be surpassed by the remainder. For example, if we want to expand
(7.18) up to N’, we first choose N such that (1 —2§)(N +1)—d(n+1) > (1 —20)(N'+1),
then ([7.18) can be continued as

g= Y W (@DD),, @y (QD.D)Y
()_0<JX<:N’ 7! < 2 > ()+N’+1Z<:j<N 7! < 2 > (@)
+ h(1_26)(N+1)_6(2n+1)O(m(x))

=y “ﬁj(<Q3’D>)l<x>+ Yo RIS (m) + BN O(m(a))

0<j<N’ N'+1<j<N
_ Z (z;z') ((Qg,D>> a(x)+h(1*25)(N H)O(m(x)). (7.19)
0SSN’

Finally, by investigating 8a(eﬁ<QhD’hD>a), the last term h(1_25)(N/+1)(’)(m(37)) in (7.19))
will become Ogé(m)(h(l_%)(N /H)), and the computations will be almost the same as above
so we leave it the readers. The proof is done. O

Next, we study compositions of standard quantizations a(z, hD) and b(x, hD). In these
quantizations, the symbols such as a(x,n) have 2n variables, and we assume a € Ss(m) for
certain order functions m which satisfy

m(z +y,n+ &) < ((y,€)) m(z,n).

For an specific example, in standard quantization the operator I — h2A has the symbol
a(z,€) = (£)2, and the corresponding order function m(z, &) = (£)? of order 2.

THEOREM 7.11 (Composition of standard quantizations). Let a(x,n) € Ss(mi) and
b(x,n) € Ss(ma). Denote

(a#b)(x,hD) = a(x,hD) o b(x, hD),
then a#tb € Ss(mims), and

a#tb(,n) = €3 AP M0 (a0 + b +y,m))ly=0.¢-0- (7.20)
where ) = <InOXn I”OX") Moreover, when h — 07 we have the semiclassical asymptotics,
N (ih)7
a#b(z,n) = i (Dy - De) (a(x,n + &)b(x +y, 1)) ly=0,=0 + h' 2NV S5(mymsy)
(—i Ial

a(z,n)8%b(x,n) + K2 NHD G (m1my).

2

(7.21)

REMARK 7.1. When either a(z,§) or b(x,§) is polynomial of £, the expansion
will be finite, i.e. when N is large enough the remainders A1 =2)(N+1) G5 (1m my) will be
exactly zero, see also [Mar02, Remark 2.6.9]. This can be seen by directly working in the
stationary phase lemma.

PRroOOF OF THEOREM [L.1]] For a test function ¢ € .¥(R"), we have

(a#tb) (2, hD)p = (2h) 2" / o= n/h( / a9 (€=m/ha, €)b(y, m) dy d€)p(2) dz dy
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= (2a) 2 [ ([ et )by + ) dy d€)p(z) dzdy

where

[]= @rh)™ / 03 QUOTEO e, ,((0,0) + (4.€)) dy de.

with Cx,n(yvg) = a(;p’n + f)b(l‘ + yv'r])’ and () = (?_ é . Note that Q_l =Q,sgn@ =0

and det Q = 1 or —1. Similar to the computations in (|7.18]), we can apply Proposition
to [---]:

hi -Q)"'D y D Yy ’
S <<( Q) 2(Z &)1 75>>> (c2n(¥:€))lw.e)=0.0)

i
0<jen

’a;if (Cx,n(ya 5)) |
<(y’ £>>2n+4N+57\a| )

+ hN+1 X O( Z sup
la|<2n+2N+3 (U6 ER2"

ih)J D , D 7
_ Z (th) <<Q (y,6) (y,£)>> (a(x,n—l-ﬁ)b(l‘+y’77))|(y75):(070)

il 2
0<j<n 7/

h=olelm, (x,n+ &ma(x + y,n)
* hN+1 x O sup ) ,
(|Oé|<2nZ+2N+3 (y,£)ER2" ((y, £))2n+AN+5—]a )
ih)J ,
0<j<N

+ pVF % (’)( sup

h—0(2n+2N+3) <§>N1 mi(x,n) <y>N2m2 (z,n)
(y,£)ER?" (

(ihy

= Y Dy D)’ (alz,n + b +y,m)|e)~00)
0<j<N
+ h(1726)(N+1)76(2n+1) % O( su Mm (l‘ )m (;]; ))
(pe)eren (ENTL(y)NFL IR

N1

By taking N to be larger than N; and No, we know SUP(y.¢)cR2n % <1, s0

ih)J )
[]= > # (Dy - De)’ (alz,n + )bz +y,m)| ,e)=(0,0)
0<j<N
+ h(1725)(N+1)75(2n+1) % (’)(m1(37a n)mg(%n))-

By (5.8)), we can continue the computation,

—ip)lel
= S M (e moghie )
la|<N

+ h(1—26)(N+1)—6(2n+1) « O(m1($,77)m2(93,77)).
By letting N to be large enough, we obtain ((7.21)). The proof is done. O
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Readers may compare Theorem m with . The asymptotics in Theorem is
in terms of the decay of [£], but the asymptotics in is about the order of h. The
first two leading terms in Theorem is ab — iV¢a - Vb (no h), while that of is
ab — ihVea - Vb.

COROLLARY 7.12. The first two leading terms of a#b is ‘ab —ihV¢a - be.‘ Assume
a € Ss(my) and b € Ss(ma), then the symbol of the commutator [a(x,hD),b(z, hD)] is

h h2
—{a.b} - ?tr(vga - V2b— V2a - Vib) + B2 S5 (myms),

where {a,b} is the Poisson bracket of a of b, and Vga - V2b is the product of two Hessian
matrices, and tr is the trace.

The proof is left as an exercise. Finally, we also have symbolic calculus for the adjoint.

THEOREM 7.13 (Adjoint of standard quantizations). Let a € Ss(m). Denote
(a(x,hD)u,v) = (u,a”*(x,hD)v),

then a* € Ss(m), and when h — 07 we have the semiclassical asymptotics,

ol
a*(z,6) = Y %Dﬁaé“@(rc,f)+h(1‘2‘”(N“)Sa(m)- (7.22)
la]<N

We omit the proof.

7.3. Composition of the Weyl quantizations

The composition of the Weyl quantizations are more peculiar than that of the standard
ones, and we explain this in §7.3.2] Before that, we make some preparation first.

7.3.1. Symplectic 2-form. We define the symplectic product.
DEFINITION 7.14 (Symplectic product). The symplectic product is defined as

REMARK 7.2. The underlying space R?" in Definition can be generalized to be
a tangent bundle. When R?" is replaced by a tangent bundle TM (or T*M) where M
is n-dimensional (hence T'M is locally homeomorphic to R?®), ¢ can be generalized as a
bilinear form on T,(T'M) x T,(TM) in the following way. For any p € TM and (ug,ug),
(vz,ve) € Tp(T'M), we define

o: T(TM)xT(TM) =R, ol|p((uz,ug), (vz,0e)) = g - Uy — Ug - Ug
Locally speaking, when imposed a local coordinates system {z7} on M and the correspond-
ing coordinates {{;} on the fiber, it can be checked that o = d¢; Adz? (Einstein summation

convention invoked) and it is invariant w.r.t. the coordinates systems. This o is a 2-form
on the tangent bundle and is called the symplectic 2-form.

In what follows, we only work on R?" rather than on general manifolds. If without
otherwise stated, we will use the following notations,

Note that all of z, w and ( are vertical vectors. Definition [7.14]is equivalent to

o(z,w) = 27 (? _01> w=z"0w=(o"zw) (7.24)
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where I is the identity n X n matrix and |0 = <9 _OI> .| Note that o is non-degenerate

and anti-symmetric, i.e. 07! = o7 = —0.

We note that ((7.24) is homogeneous of degree 2 of ¢ (i.e. o(h¢) = h%5(C)), but not in a
quadratic form of ¢ under a symmetric matrix (o is not symmetric). We can achieve this
by

1 0 o 1
a(o:a(z,w>:zT-a-w=2cT-<UT 0)-<=2CT-E-C,

where

¥ = (UOT g) (7.25)

is a 4n x 4n matrix. Note that ¥ is non-degenerate and symmetric satisfying 2=' = £7 = %,
det¥ =1 and sgn ¥ = 0. In summary, we have

T

R R L %gT S.C= %@g,@. (7.26)

7.3.2. The composition. If we mimic the proof of Theorem [7.11] we would have

a’(xz,hD) o b”(z,hD)yp

—2n (x—2)- (x—y)-(&— T+ +z
—(2mh) 2 /e< Wh(/e( v ”)/ha(Ty,f)b(y2 ;1) dy d€) () dzdn

—2n i(x—2)- —1y- Ttz
—oan) > [ [eweia 4o+ T ) dyd)e(e) dzdy

—n) [ e (R ) () dsd = (D)

where the ¢ should satisfy

T+ z n =i
e(=5 =) = (2rh) /62h <Q(y’5)’(y’5)>a(% +x,&+ n)b(% + =) dy dé.

However, this argument doesn’t work, because there is an additional z on the RHS.
Instead, from a*(z, hD) o b“(x, hD) = ¢ (x,hD) we can proceed as follows,

a"(xz,hD) o b"(x,hD)p

T+ z

—2n i[(z—y)- —2). T+ +z
—(2ah) 2 [ el e migTLY oy E () dy dz dg dy

-n i(x—z)- T+z
(ot [ eI (ol dz de,
which, due to the arbitrary of ¢, suggests

i(x—2)- T+ 2z —n il(z—vy)- —2). T+ +z
/e< Vhe(=5=, Q) d¢ = (2mh) /e“ st/ b= ) dy dg di.

Readers may note that the LHS is an inverse Fourier transform. We make the following
change of variable before we perform the Fourier transform:

T —z

B =S {x:t—i-s
=

rT+z z=t—s

2
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SO
/ e25S/he(t, ¢) d¢

—-n i s—vy)- —{+5)- t+ s+ +t—s
oty [ ettt tming LY gy EEES ) 4y dgdn,

c(t, ¢)
—(2rh)~n / o= i25C/h il(t+s—y) £+ (y—t+s) ] /h g (t+5+ Y ey (y+;_5,n) dy d¢ dn d(2s)

o (2mh) / il (1) +s-(E4n=20)] /g g 5 et g —% n) dyds d¢ dn

:2n(27rh)—2n/ei[y‘(ﬁ_§)+s~(§+n)]/h (y; +4,E+O)b (72 +t,n+¢)dydsdédn

:2n(2ﬂ_h)—2n/ei[(y-l-S)-T]—(y—S) &l/h ( +t €+<) (T—'_t 77+C) dydsd&dn

=2"(2mh) 2" / Y =280 hg () ot €+ Ob(s + t,n + €)2" dy’ ds’ dE dny

=(mh)™2" / e2n=s/hg(y 4t € 4+ C)b(s+t,n+ ¢) dyde dsdn

=(wh)™" / TR ES s gy 1 €+ Ob(s + t,n + () dydédsdn,  (7.27)
where the 4n x 4n matrix X is defined in , and we used Exercise |7.2 .

Recall that 71 =%, det¥ =1 and sgnZ‘ = 0. Now we apply Proposmlonuto
and obtain

—2n n j _ -1 J
(t.¢) ~ {7 > (2mh)? ZE <<( 25%3) D(y,§7s7n)7D(y7£,s,n)>> (ay+ 16+ O)
J

| det(2%)]1/2 J! 2i
X b(s+t,1m+ ) |y=s=g=n=0

= Z W <<_%ED(y,§,s,n)7 D(y,&,s,n)))j (a(y7 g)b(sv 77)) |y=3=t7§=7]=c

(ih ,
— Z y /2 Ds “De+Vy - Vn)](a(y,f)b(s, U))‘y:s:t, E=n=C>

where we used Exercise Here for simplicity we omitted the analysis of the remainder
terms, and for the detailed analysis of the remainder, readers may refer to [Zwo12]. Noticing
that

(D D9, -9, = Y ()00 DT, 9,

0<k<j

- ()Y Epepe v U—Bloivs oy 59)
— . ~ DS D 4 y Vo (by (B
0<k<j loo|=k |Bl=j—k

-y ¥ % ]‘ﬂ'DaD 0007

0<k<j|a|=k|B|=j—k
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- I po BB
= Y S D Deayo,
lol+181=j

we can continue

(th/2)? 3!
Z Z Z / |ﬁ| DaD?aﬁaB( (yv f)b(s7 77)) |y:8:t,§:nzc

Jlal+|8|=j 7
i | [+18]
_ Z h/jlﬁl DJog (al(x,€)) D30 (b(w, )] |,y e

We have just proved the following result:

THEOREM 7.15 (Composition of quantizations of semiclassical symbols). Assume that
a € Ss(my), b € Ss(ma). Denote

(a#b)"(z,hD) = a*(x,hD) o b“(x, hD),
then a#"b € Ss(mims) and
agt b, m) = €MD) (alw, b(y, ) ly=r. e=n (7.28)
where A(D) = 10((Dy, D¢), (Dy, Dy)) = 5(Dy- D¢ — Dy - Dy) and the o is defined in (7.23).

Moreover, when h — 07 we have the semiclassical asymptotics,

. N h/2 :
a#b(z, ) Z (Dy - D¢ + Vo - V) (ala, )by, n)) ly=a, e=1

+ h(1725)(N+1)S(5 (m1m2)

ih/2)lal+8]
S W2 g5 peage,nyDRolb(, )

18! I
(%Yo
lal+]B|<N b

+ RA=2OWNHD G (11my).

(7.29)

REMARK 7.3. Similar to Remark the expansion ([7.29)) will be finite when either
a(z,§) or b(x,§) is polynomial of &.

Readers may refer to [Zwo12, §4.11] for an another proof of Theorem

COROLLARY 7.16. The first two leading terms of a#"b is ‘ab— ih{a, b}/2.‘ Assume
a € Ss(m1) and b € Ss(m2), then the commutator of a*(x, hD) and b (z, hD) is

[a®(z,hD),b" (x, hD)] = %{a, b} (z, hD) + h*1=29)0p, (S5(mims)),

where {a,b} is the Poisson bracket of a of b.

The remainder in the commutator expression looks out of expectation; it is of order
R3(1-20) rather that h2(1=2%). This is because the second order leading term is in fact zero.

PROOF. From ([7.29) we have
h ih
a#vb = ab + %Dga - Dyb+ %an Vb

i 2
+ (0, 0,4 (Ve 9,02 = 2V 9)(Ve - 9, )

+ hg(li%) Sg(mlmg)
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= ab — ih{a,b}/2
(ih/2)

- T[tr(vﬁa - Vb) + tr(VEa - Vib) — 2t0(V{, ga - VE, 0 D)lly=a, =y

+ h3(1725)55(m1m2)
= ab —ih{a,b}/2 + (ih/2)° [tr(V2a - V2b) + tr(V2b - VZa) — 2tx(V2, a- V2, b)]
- ’ 2' T n x n (33’77) (9«“777)

+ h3(1_25)55(m1m2),
hence
a#Vb — b#a = —ih{a, b} + K312 S5(myms).
The proof is complete. 0

7.3.3. Specialties of Weyl quantization.
LEMMA 7.17. For u, v € .(R"), we have
(a¥(z,hD)u,v) = (u,a"(x, hD)v).

The proof is left as an exercise.
The Weyl quantization is the correct generalization of a solution operator of an ODE.
It is straightforward to check that v(z,t) = e/®u(z) is the solution of an ODE

{&gv(x,t) = f(z)v(x,t), teR,

Recall the linear form I(z,£) = 2* - o + £* - €. Now we would like to generalize the afore-

mentioned idea by replacing f(x) with an operator %l (z,hD) and define e R U@hD)y as the

unique solution of the corresponding ODE. But in order to avoid notational confusion be-
tween “en!(@hD)y» and “(e%l)(az, hD)u” defined in , we deprecate the use of enl@hD)y,
We will see from the following result that the correct generalization will be the Weyl quan-
tization (e%l)w(:z:, hD)u instead of the standard quantization (e%l)(x, hD)u.

LEMMA 7.18. Let l(x,§) = a* -2 + & - § for fized x*, £ € R". For every u € &7, the
Weyl quantization (e%l)w(:v, hD)u is the unique solution of the ODE

dv(z,t) = ~l(z, hD)v(z,t), teR,

h (7.30)
v(x,0) = u(z).
ewl@hD) — (k1@ (z, hD). (7.31)
Specifically, we have
(en))? (2, hD)u = enl @D E)2/2y 0 4 exp), (7.32)
And we have the composition relation
o 1w hD) y m(z,hD) _ €§a(l,m)e%(z+m)(x,w)’ (7.33)

where the o is given in Definition [7.1]}
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PRrROOF. First, we solve . By this ODE we have dyv(z,t) = £ (z*-2+£*-hD)v(z, t),
which gives a transport equatlon (0 — & - V)v(z,t) = La* - av(x,t). Let v:t € R —
(r — €%, t) € R"! be a curve, then we can obtain

(0(1) = (0~ & - Vp(r() = 1o (2~ EDelr())
This is a one-dimensional ODE and the solution is straightforward,
v(y() = et Dy (),
which is equivalent to
v(x — &t t) = e%[(x*'x)t*(x*f*)tz/mv(at, 0).

By replacing = with = + £*t and substituting the boundary condition v(z,0) = u(x) into
the solution above, we obtain

v(z,t) = v((z+ &) — &7t,1)
ehle @D 22y (0 4 exp)
_ e%[(r*'x)t-F(x*‘f*)tQ/Q} (z + £°¢)
- eRU@hD), _ opl(at )t (zt£7)t2 /2] u(z + £%). (7.34)

Second, we compute (e%l)w(x, hD)u. We have

(#1% ( hD)u = (2h)~" // W)€/ I (SE+E €y () dy de
e%(x*%)(gﬂh)—n // pi(@+E t—y)-E/h e%(w*%)u(y) dy d¢

2>/5 x4+ €t —y)en @ Du(y) dy ((27rh)”/em"5/hd§: §(a))

L) Q:E*.(QH'E t)
2)en

= eirl s (4 €)= en @ DEEEN 2y (4 erp),
which is (7.32). From ((7.34) and (7.32]) we arrive at the first equality in the theorem.

For the composition relation, let I[(x,&) =z -z +&] - £ and m(z,§) = x5 -+ &5 - €, then
from ([7.34]) we have

e Em)@hD)y — o l(ai+as)at+(ei+a3)- €+ /2y (1 4 (e + e)t),

:\‘*

and
enl@hD)gym@hD)y — (W)Y (3, hD) o enl@ )5 6)2 /2y (1 4 ¢34

(@] @)t (2] €)1 /2] o (@3- (2+E7 D)1+ (23-63) /2 u(x + &t + E5t)

I
[
>

e (@T+a3) ot (o €1+ 205 61+ 6 2y (1 4 (7 + €5)1)

ek @ +a3) T+ @R 2y (1 4 (5 4 €3)E) - eh @6 —ai€)/2

_ ot D (5.69)) o (Hm) (@ hD),,

Readers should note that the o here is the symplectic product defined in Definition [7.14]
The proof is complete. [l

By using ([7.31)), we can represent the corresponding Weyl quantization of a symbol by
its Fourier transform.
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LEMMA 7.19 (Fourier decomposition of a¥). For any a(z,€) € .7 (R?*?), we have

a“(z,hD) = (27h)™ | Fra(l)er!@hD) q,
R2n
where | = (z*,£*) € R?™ and I(x, hD) is defined as (7.12)). This can directly generalize to
the case where a(z, &) € ' (R?") and then (a®(x, hD)u,v) = (2wh) 2" a((en! @My, v)) for
Yu,v € L (R™).

REMARK 7.4. With the help of Lemmal[7.19] every Weyl quantization can be represented
l(z,hD)

by means of operators of the form en where [ is a linear form. Therefore, quantizations

of the form e%l(w’

PROOF OF LEMMA [.19. When a € ., we have
a(z, &) = (2rh)™" / el @8 Foa(l) dl,
R2n

thus by (7.31)) we arrive at the statement. The case where a(x, &) € %/ (R?") is left as an
exercise. g

hD) plays an important role in semiclassical analysis.

7.4. Applications in Carleman estimates
One of the examples of Carleman estimates is of the following
(le™®ul|? < ||e7¢ Pul?. (7.35)
To prove it, we set h = 771, v(z) = e?@/Py(z) and denote an operator Py as
Py: f = ?/"h2P(e0/h ),

then ([7.35) is equivalent to
1Pyoll* Z Rol. (7.36)

We assume

USCI(P¢) € S(m) (737)

for some order function m. Here we use o4 (A) to signify the semiclassical symbol of A.
Set A= (Py+ P})/2 and B = (P, — P})/(2i), and denote

o= USCl(ihfl[A, B)),

then we can conclude

|Psul2e = (Pyv, Pyv) = [ Av|2 + [ Bol? + (i[4, Blo,v) = ho(w, hD)v,v),  (7.38)
o(z,hD) is self-adjoint, i.e. o(x,hD)* = o(z, hD). (7.39)
Using , inequality will be true if the following is true:
(o, ADYv,v) 2 [[o]2 (7.40)
SO imp. It’s left to prove .
To prove ([7.40), we compute

o = 05 (ih™'[A, B]) = osa(ih ™ [(Ps + FP})/2, (Py — P})/(20)])
1

* L h .,
= ﬁascl([Pgba P¢]) = %[;{pdwpd)} + h‘QS(mQ)] (COI’OH&I‘y 7.12

1
= 27{]977 +hS(m),pg} +hS(m?) (Theorem |7.13

= 2%{% o} + hS(m?) = {Rpy, Spy} + hS(m?). (7.41)
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The remainder term S(m?) comes from the assumption (7.37) and the fact osa(Py) € S(m).
If

{Rpg, Spg}(,€) = Cm(x, €)%, (m(z,€) > 1) (7.42)
holds, from (7.41)) we know when A is small enough we will have
lo(2,6)] 2 m(z, €)% (7.43)

By combining (7.43)), (7.39)) and [Zwo12, Theorem 4.19], we can conclude ([7.40)). In sum-

mary, we have the following theorem.

THEOREM 7.20 (Carleman estimates). Let P be a S¥YDO and ¢ € C*°(R™;R) and denote
Py =M o h?Poe /" and py := osa(Py). Assume

0scl(Py) € S(m) for some order function m(x,§) > 1
{mpqﬁa %p¢}(w7 g) > C’m(:z:, 5)23
then there exist positive constants C' and 1y such that for V1 > 19, Yu € #(R"™), there holds

7'3||eT‘1)uH2 < CH6T¢PUH2.

Exercise
EXERCISE 7.1. Prove Corollary [7.12]
EXERCISE 7.2. Assume y, &, s,n € R", and define the 4n x 4n matrix ¥ by (7.25]). Check

1
§<E(y7575>77)7(y7f>5a77)> =S g_y -1,

1
§<2D(y,£,sm)v D(yﬁﬁ,sm)> =Ds-De+Vy -V,

EXERCISE 7.3. Prove Lemma [T.117



CHAPTER 8

The wavefront set

In this chapter we follow closely [Chel?7, §3].

8.1. Basic facts
Recall the Peetre’s inequality (cf Lemma [5.2)):

(a—b™ < (a)™- ()™, Va,beR" and Vm € R. (8.1)

We also need a angular separation inequality, which states that

lla—b| > C(la| + b)), Ya€Vi, Vbe Vh,| (8.2)

provided that Vi and V5 are two cone in R™ separating each other by a positive angle, and
the positive constant C' depends on this angle. One example is that V; = {p(cosa, sina) €
R?;p>0,0<a<r/4} and Vo = {p(cosa,sina) € R?; p > 0, 31/4 < a < 7}. From
we can easily derive

(a—b)y"™7M2 < Ca)y™™ - (b)"™2, Vae€ Vi, Vbe Va, Vmy,may > 0. (8.3)

PRrOOF OF (8.3). From |a — b] 2 |a| + |b| we have (1 +]a — b)) < (1 +]a])~! and

(I+ja—0b)t S (A+16)7Y so (1+ Ja—b))"™ ™2 < (1+|al])~™ (1 + |b])~™2, which is
equivalent to (8.3]). O

These inequalities are frequently used in microlocal analysis and sometimes play key role
in the proofs of microlocal analysis. We use the notation T*R™\0 to stand for the cotangent
bundle with the zero section excluded. We deliberately exclude the zero section for some
purpose, see Remark We introduce the notion of conic sets, the smooth direction and
the wavefront set as follows.

DEFINITION 8.1 (Conic set). A set I' C T*R™\0 is called a conic set if I' = w x V for
some w C R™ and some set V' C R™\0, where the set V is conic in R”, i.e. if £ € V then
t¢ e Vforallt > 0.

DEFINITION 8.2 (Smo). Let m € Rand a € S™, and A is the ¥DO of a. Let I" C T*R™\0
be a open conic set. If for every integer N there exists a constant Cr y such that

la(z,€)] < Cr N (€)™, V(z,€) €T, (or equivalently ‘a €S > inT. ‘) (8.4)

holds, we say I is a smooth direction set of a (and of A). We write | Smo(A) := U F | where
F ={TI'; I is a smooth direction set of A}.

It can be checked that Smo(a) is always open in T*R"™\0. We can also extend the
Smo(a) to a which is in S™ (R} x Rév) (n and N need not to be the same). The idea of the
smooth direction is that, for any symbol a € S™, no matter what the value of m is, there
are chances that there exists some directions in £ such that a decays at infinite speed in
these direction.

7
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LEMMA 8.3. Assume A, B € U7 then Smo(A) U Smo(B) C Smo(A o B).
The proof is left as an exercise.

DEFINITION 8.4 (Wavefront set). Assume 2 C R” is a domain. For any given distribu-
tion u € 2'(Q), the wavefront set | WF(u) | C T*Q\0 of u is defined as a closed subset such
that, for any (xo, &) ¢ WF(u), there exists a neighborhood w of ¢, a function ¢ € C°(1)
with ¢(zg) # 0 and supp ¢ C w, and a cone neighborhood V' of £y such that

Pu(€)l < Cnw (€)™Y, YNeNVEeV (8.5)

holds for some positive constant Cy .,y depending on N, w and specially on V.

EXAMPLE 8.5. Compute the wavefront set of u(xy,z2) := H(x1), where H is the Heav-
iside function. Fix a point (Z1,Z2). When Z; # 0, we can always find a cutoff function
¢ € OC(R?) such that pu € C°(R?), so pu will be rapidly decaying. This implies that

{(iluj:Q;él?gQ); il #O}QWF(U) :®7 (86)
so WF(u) is made of points of the form (0, x2; &1, &2), thus in what follows we assume Z; = 0.

Fix cutoff functions @1, s € C°(RY), such that ¢; is supported in the neighborhood
of 0 and ¢5 in the neighborhood of Z2, and denote ¢(x1,z2) = p1(x1)p2(x2), then

Fuee)l = [ e dnl | e o) dral (87)
0
When &, # 0, we can continue (8.7)) as
[pu(6r, &2)| S / lp1 (@) day - (€2)7™ < (&)™ (8.8)

For any cone Vi := {(&1,&2); |&1] < Clé2|} where C > 0, we have || < [&1] + &2 < €2,

which implies ((&1,&2)) ~ (£&2). Hence, ({8.8)) becomes |pu(&1,&2)| < (£)~°°. Hence, for any
constant C' > 0, we have

(0,725 61,82) 5 T2 € R, [&1| < C|&a|} N WF (u) = 0. (8.9)
Combining and , we see that
WF(U) C {(0,@2;51,0) ; Xo € R} (810)

Finally, we show
WF(U) D {(0,.@2;51,0); X9 ER}. (8.11)
Fix Zo € R. For any ¢ € C2°(R?) supported in the neighborhood of (0, Zz), we have

ou(&1, &) ~ /fim&fm&s@(xhxz)H(ﬂh)d361 dxg
= /0 e MGy, &) day = i€ B0, &) + & /0 e 8D, @21, &) da

= i€ 9(0,&) + &7 (i€ Dy 90, &) + 17 /0 e 19D G(w1, &) day)

=i 13(0,&) + O(1G] ™), (8.12)

where 3(z1,&) = [pe @22p(x1,22) dze. We know $(0,&2) = [ e 282(0,z5) dwy is
not compactly supported due to the uncertainty principle, so there is & # 0 such that
$(0,&) # 0. For any cone VY, := {(&1,&2); |&] < C|&1]} where C' > 0, when |¢] is large
enough we always have (£1,&) € V(.. Hence, means that in any cone V/,, we have

|G (&, &2)| = [&1] M@0, &) + O(lér] 2) = |&i|
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s0 pu is not rapidly decaying in any cone V/, which contains {(£1,0)} as their common part.
By the definition of the wavefront set we can conclude
(0,Z2;&1,0) € WF(u),
which implies . Combining with , we obtain
WEF(u) = {(0,22;§1,0); 22 € R, {4 # 0},  where u(zy1,29) = H(z1).

It is easy to see from the definition that (WF «)¢ is an open set, so every wavefront set
is closed. In fact, we can relax the restriction on the function ¢ in the Definition ({8.4]) as
follows.

LEMMA 8.6. Using the same notation in Deﬁm’tz’on if (xo,&0) &€ WF(u), then there
exists a another neighborhood w' C w of xg, such that for any ¢ € CX(w'), which doesn’t
necessarily satisfy p(xg) # 0, the estimates holds, with the constant Cn v now
depends also on .

ProOF. We call for the result (2) in Theorem below in advance. Assume that
(0,&0) ¢ WF(u), then there exists a neighborhood w of xg, a function ¢y € C°(R™) with
vo(xg) # 0 and a cone neighborhood V' of £ such that holds. Because ¢o(xg) # 0
and g is continuous, there exists another neighborhood w’ C w of zy such that |po(x)| >
lpo(z0)/2| > 0 for all x € ', and thus 1/pg(x) is well-defined in w'; the denominator keeps
a positive distance from 0 in w’. Now for any ¢ € C°(w'), we know ¢/pg € C2°(w'), hence

FE)] = 16 /0 oo 1 = | [ (e — ) 3oln) o
= /|m(§ -l ’mmﬂdn < /(,g —p) N )Nl

<O [@N a5 (@7, N e
Note that we used Peetre’s inequality (8.1]). The proof is complete. O
The wavefront set possesses some simple facts [Chel7].

THEOREM 8.7. Assume that u, v € 2'(Q) and a € C°(Q), then we have
(1) WF(u +v) € WF(u) UWF (v);
(2) WF(au) € WF(u);
(3) WF(D%u) € WF(u).

PROOF. For (1). Assume that (z¢,&) ¢ WF(u) UWF (v), then (z,&) € (WF(u))"N
(WF(U))C, so there exists neighborhoods wy and ws of zg and cone neighborhoods V7 and
V5 of &y such that

Gaau(©)] < O™, VE € Vi, Yipg, € D(w1) with g (x0) # 0, YN € N,
[P2o0(8)| < CLE)™N, V& € Vi, Yipu, € D(w2) With g () # 0, YN € N.
Thus, we have
Prow()] < CE)™N, VE € VINVa, Vo, € Z(wi Nws) with ¢y (z9) # 0, YN € N,
where w = u or v, so (z9,&) ¢ WF(u+ v). We can conclude (1).

For (2). Assume (xo, &) ¢ WF(u), then there exists a neighborhood w of x¢, a function
v € Z(R™) with ¢(z¢) # 0 and a cone neighborhood V' of £y such that for all £ € V,

|Gau(€)] = |(a - pu)(£)] ~ /@(5 —n) -a(n)dn|
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g/ Gule — 1) |a<n>|dn,s/<5—n>—N-<n>-N—"—1dn

|ou
<N / -y Ny < (€)Y, VN eN.

Therefore (z9,&y) ¢ WF(au). We can conclude (2).

For (3). Assume (20, &) ¢ WF(u). For any ¢ € 2(w') where the o' is as in Lemma [3.6]
we have

(ﬁ/DO‘\u(f) ~ /eix'égb(a;)Dau(a;) d ~ /Da(emf(b(x))u(x) dz

_ / 3 <g>Dﬁ (e" ™€) DB (z)u(z) dx

18I<|a|

Thus, by Lemma
el s ¥ &G0 wrels T (5) @0 s o,

1BI<]e| 181<]a]
for any N € N. Therefore (g, &) ¢ WF(D%u). We can conclude (3).
The proof is complete. U

2. Wavefront set of product of distributions

In this section we deal with some more sophisticated cases of the computations of the
wavefront sets.

8.2.1. Direct product. The first theorem is about the wavefront of the direct product
u®v. Foru: () — C and v: 2(Q,) — C, we define the direct product u ® v of u and
v as a distribution on Z(Q, x ) that maps ¢(z,y) € Z(Q; x Q) to (u, (v, o(x,Y))y)z,

<u X, 90(337 y)> = <u7 <U7 QO(ZL‘, y)>y>$

THEOREM 8.8. For any given distributions u € 2'(Q;) and v € 2'(Qy), the wavefront
set of the direct product u ® v satisfies

WF(u®v) € (WF(u) x WF(v)) U (WF(u) x suppgv) U (suppou x WF(v)),|  (8.13)

where suppyu = {(x,0); x € suppu}, suppyv := {(y,0); y € suppv}.

PROOF. Assume that (zo,yo; 0, 70) doesn’t belong to the right-hand-side of .

For the case where £y # 0 and ny # 0, we know (x0;&p) ¢ WF (u) and (yo;n0) € WF(v),
so the Fourier transform (¢, ,0)u®v)" (€0, 70) cannot have the decay of the order ((¢, 7))
for any N € N. Therefore, (xo,y0;&0,m0) € WF(u ® v).

For the case where § = 0 and 79 # 0, if xy ¢ suppu, obviously we can conclude
(0, Y0;0,m0) ¢ WF(u ® v), so we suggest that xy € suppu, thus we must have (yo;n0) ¢
WF(v). Choose ¢(x,y) = p1(x)p2(y) as the cutoff function where p; € Z(wq) and w; is
some neighborhood of zy. So does 3 accordingly. Thus we have

(pu @ v)"(&,m) = (1u)" (&) - (g20)" ().
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We have that (pv)"(n) is rapidly decaying and (¢1u)”(€) grows in polynomial order of &
in a cone neighborhood of (0,7). It’s easy to check that, in such a cone neighborhood, we

have {(€,1)) S (1) S {(€,))- Thercfore,
[(pu @ v) & )| = [(L1u) ()] - [(p20) ()] S (m) N F- ()~

S{Em) N (et = (6,

for any N € N. Therefore, (z9, yo; &0, m0) € WF(u ® v).
The case where & # 0 and 79 = 0 is similar to the case where {, = 0 and 7y # 0.
The proof is complete. O

8.2.2. Product. Next, we investigate the product of two distributions. In contrast
to the product of functions, the product of two distributions is not always well-defined.
Under certain conditions, the product of two distributions can be defined, at least locally.
We know that if ¢ € C°(Q) and u € 2'(Q), we have pu € £'(2) and thus the Fourier
transform pu is well-defined and can be estimated of polynomial order at infinity. Thus we
might have chance to define the product by using convolution,

(GPuv)\(€) = (2m) "2 / (pu) (€ — 1) - (o) (1) dn, (8.14)
Rn

as long as the convolution (8.14) is integrable in the Lebesgue sense and grows under
polynomial order in terms of (£) at infinity, which implies @?uv € &”(€2). This leads to the
following result.

THEOREM 8.9 (Product Theorem). For any given distributions u, v € 2'(Q), when
(WF(u) + WF(v)) N Oy =0, (8.15)
where WF(u) + WF(v) = {(z,&§1 + &2); (2,&) € WF(u), (x,&) € WF(v)}, and Oy :=

{(x,0); x € Q}, the product “uv” can be well-defined in the sense of (8.14]) and its wavefront
set satisfies

WF (uv) € (WF(u) + WEF(v)) UWF(u) UWF(v). (8.16)

PROOF. We partially follow [Fri98, Proposition 11.2.3]. The proof is divided into two
parts: first, we show that under condition (8.15) the convolution (8.14)) can be controlled
at polynomial of &; second, we show the relation (8.16)).

Step 1. For any open cone neighborhood V3 of WF(u) + WF(v), there exists open cone
neighborhoods V{ and V4 of WF(u) and WF(v), respectively, such that V{/ + V5 C V3. Also,
there must exists open cone neighborhoods V; and V5 such that

WF(u) S Vi &V
WF(v) G Va2 G V3
WF(u) + WF(v) S Vi+Va SV + VG V3
(Vi+V) N0, =0
The V] and V4§ will be utilized in Step 2.
Fix some zy € 2, we can find some ¢ € Z2(Q) with ¢(x¢) # 0 and also ¢ guarantees pu

and v that (8.5) hold. For any fixed & € R™\{0}, the integral (8.14) can be divided into
four parts,

[ o &= (o)

(8.17)

_ A _ ) A A _ ) A
= ﬁm(mo,gw)w(wu) (€0 =) - (w0)"(n) dn + Am(m@n)wl(wu) (€0 =) - (pv)"(n) dny
(zo,m)¢EVa} (zo,m)€Va}
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A _ . A A _ . A
¥ fosteotrmen G0 G = ol s [ eu & ) (o) ()
(zo,m)¢Va} (zo,m)eVa}
=L+ 1+ I3+ 1. (818)

The condition (8.15)) will (only) be used to estimate Iy.
According to Definition and Peetre’s inequality, we can estimate I; as

112 . gopevt 660" 60 = ] (00)" ()|

(wo,m)EV2}
< _ o \—N —N—n—1 < —-N N | —N—n—1
S [ =m e s )™ [ N
S ()N, VNeN (8.19)

For I, we know that pv € &'(Q2), so |(¢v)"(n)| can be dominated by (n)! for some
[ € N, thus

1S o 606 = )] 100 ()]

(I0777)EV2}
< o\ —l—n—-1 l
~ /{77§(500750—?7)$V1 {€o —m) (n)"dn
(J?(),?])GVQ}
N <§O>l+n+1/ <77>_l_n_1 . (77>l dn (Peetre’s inequality)
S {0y (8.20)

The estimation of I3 is similar to that of Io,

E. oty 17" =)o) @l

(wo,m)¢Va}t

/{n e, 160 1) o=t =6

(z0,60—7)¢V2}

A S R

(w0,60— ¢V2}
< <§0>l/+n+1/ <’Y>l/ : <’7>7l/7"*1 dy (Peetre’s inequality)

< (&) (8.21)

For I, we can show that the domain of integration {n; (zo,& — 1) € V1, (z0,n) € Va}
is bounded. We temporarily use 77 to mean the direction of 1, 7 = n/|n|. Therefore
the direction of the vector & — n is parallel to &y/|n| — 7, thus when || is large enough,
(20,80 —n) will be in —V5 := {(z, —n); (x,n) € Va}. We know (x0,&n — 1) € Vi, so the set
{(x0,7); (w0,7) € V4, (wo, =) € V2} is not empty. This contradict with (Vi +V2) N0, =0
in (8.17)). Therefore, when || is large enough, the conditions (zo,& —7) € Vi and (zg,7) €
Vo cannot be satisfies simultaneously, which implies the set {n; (zo,& — 1) € V1, (x0,n) €
Va} is bounded. Therefore,

1S o 1606 = )] 00 )]

(wo,m)¢Va}
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S / (& — )t
{n;|n| bounded}

S <fo>l,/ <77>|ll‘ : <77>l dn (Peetre’s inequality)
{n;|n|] bounded}

/

()t dn

< (o). (8.22)

From ({8.18])-(8.22]), we conclude that the convolution ({8.14)) is Lebesgue integrable and
grows with polynomial order in terms of (£), thus @?uv € &'(Q). Now wv € 2'(Q) is
well-defined.

Step 2. Under condition (8.15]), we study the wavefront set of uv. Assume that
(z0,&0) & V3 U V] U V3, (8.23)

Again, the condition will (only) be used to estimate I;. Note the particular arrange-
ments of the Vi, V] and Va, VJ in (8.23) and (8.18). We will utilize these arrangements
combining with condition (8.17)) to estimates I and I3.

We estimate I; the same way as in Step 1, i.e. as in .

For I, to get the rapid decay w.r.t. &, we shall adapt different strategy. We know that
v € &'(Q), so |(pv)"(n)| can be dominated by (n)! for some I € N. Thanks to the condition
, we know (x0,&o) ¢ V4 and now (zg,n) € Va. Because Vs ; Vy, we know that V5 and
Vj are separated with a positive angle, so the inequality can apply to (§o — 1),

1= . gyt 190 60 = ] 00) ()|

(wo,m) €V}

< _\—N—-l-n-1 I
~ Aﬁ;(%éo—’?)%% {€o—mn) (m)" dn

(zo,m€EVa}
S [ @ @i (o 63)
SN, VNeN (8.24)

The estimation of I3 is similar to (8.24]),

Bl< |, ogopen [P0 @ =[G )l

(wo,m)¢Va}
/ e @D @) &~ dy (=& —n)
xo,fo v ¢V2}
960,50 v ¢V2}
St [ o) o by €3)
S, VNeN. (8.25)

Now we work on Iy. From (8.15)), (8.17)) and (8.23), we know that &, ¢ Vi + V5, thus
the set {n; (zo,& —n) € V1, (x0,n) € Va} is empty. Therefore I, = 0. Combining this fact

with (8.18)), (8.19), (8.24) and (8.25)), we arrive at

[(Q*u0)(€)] < Cn (&)Y, VN €N,
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for (xo,&0) ¢ V3 UV{ UV,. This implies WF(u+v) C V3 UV/ U Vy. The sets V3, V{ and V;
can be close to WF(u) + WF(v), WF(u) and WF (v), respectively, as close as possible, so
we arrive at (8.16]). The proof is complete. O
8.2.3. Convolution. We define

WEF'(K) := {(x,5;:§,—n); (z,4:¢,m) € WF(K)},

WFo(K) :={(2:£); Jy s.t. (2,4:€,0) € WF(K)},
AOB _{( ) ( )EBS't' (:E’yag’n)eA}a

={(x,0); z € Q}.

We need the following lemma.

(8.26)

LEMMA 8.10. Assume f € D'(Q x Q), and there is a compact set K C Q such that
supp f C Q x K. Then

P / f(x,y) dy) = WE,(f). (8.27)

PROOF. Step 1. (D). Assume (z0,&) ¢ WF ([ f(z,y)dy), then there exists x,, €
C2°(Q) such that

[ e, @) e 9) dyds = O&) ) = O(((60,0) ).

which gives

vy € K, / e 10D €00\ @)y (y) £ (2, ) d(z,y) = O(((&,0)) ™),

where x € C°(Q) with x = 1 on K. This means (zg,y;&,0) ¢ WF(f) for Vg € K, so
(x0,&0) ¢ WF,(f). Hence,

WF ( / f(z,9) dy) > WE,(f).

Step 2. (C). Assume (z9,&) ¢ WF.(f), then for Vy € Q we have (zg,y;&0,0) ¢
WEF(f). Therefore, for Vg € 2, there is a neighborhood of 4 such that

/ e~ e D 0y (@)X (y) f () d(w,y) = O({(€,0)) ), (8.28)

for x = 1 in that neighborhood. Because K is compact, so by using partition of unity
technique, we can remove the term x(y) in (8.28)), and obtain

[ e @ [ ) dy) dz = 0((&) ),
which gives (zo, &) ¢ WF([ f(z,y)dy). Hence,

WE ([ f(a.)dy) € WEL(P).
The proof is done.

THEOREM 8.11. Assume u € &'(Q), and K € 2'(Q x Q). When (WF/(K) o WF(u)) N
O, =0, the distribution
w(x) = (K(z,y), u(y))y
1s well-defined in the sense that

Vo € 2(),  w(p) = (K(z,y),uly) © ¢(z)),
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and we have the following canonical relation:

WEF(w) C (WF'(K) o WF(u)) U WF,(K). (8.29)

REMARK 8.1. Note that the supp u should be contained in €2, otherwise the w may be
ill-defined.

PRrOOF. Step 1. Turn into product. Denote @(z,y) = 1(z) ® u(y) where 1(z) is the
constant function. The wavefront set of the function 1(x) is empty, so by Theorem we
have

WF(a) C (WF(1) x WF(u)) U (WF(1) x suppgu) U (suppyl x WF(u))
= QU DU (suppyl x WF(u))
= {(z,4;0,n); = € supp Y, (y,n) € WF(u)}. (8.30)

The w(z) can be written as

w(z) = (K(z,y),u(y))y = /K(x,y) cu(x,y)dy = /Kﬁ(x,y) dy.
where K stands for the product of K and 4. By Theorem [8.9] to guarantee the product
K is well-defined, we need to check if the prerequisite
(WF(K) + WF(@)) N Ogy =0 (8.31)

is true. It can be shown that the condition ( WF'(K) o WF(u)) N O, = { guarantees
(see Exercise , so K1 is well-defined.

Because u € &’(R2), we see that for Vo € Q, supp Ku(z,-) is uniformly compact, so by
Lemma we have WF ( [ Ka(z,y) dy) = WF,(Ka), so,

WF(w) = WF ( / Ki(z,y)dy) = WF,(Ka) = WF(Ka) o Oy, (8.32)

where we used the fact that for general distribution f € D'(Q2 x Q),
WFE.(f) = WE(f) 0 Oy,
Step 2. Use product Theorem. Combining with Theorem we can have
WF(w) = WE(K) 0 Oy C ((WF(K) + WF(i1)) UWF(K) U WF(ﬁ)) 00,
= M; UMy U Ms, (8.33)

where

M, := (WF(K) + WF(a)) o O,
M; := WF(K) o Oy,
M3 := WF (@) 0 Oy.
The set WF(K') + WF (@) can be expressed as
WF(K) + WF ()
={(@, &) =G+ & n=m+mn, (z,y;8,m) € WF(K), (z,y;&2,m2) € WF(a)}
={(z.y:&m) s n=m+n2, (z,y;§&,m) € WF(K), (y,12) € WF(u)}. (by (8.30))
Thus,
My = (WF(K) + WF(2)) 0 Oy = {(,€); (x,y:&,—n) € WF(K), (y,n) € WF(u)}
={(z,8); (z,y;&,m) € WF'(K), (y,n) € WF(u)} = WF'(K) o WF(u). (8.34)
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By (8.30)) it can also be checked that

My = WF,(K), M= 0. (8.35)
Combining (8.34), (8.35) with (8.33), we obtain (8.29)). The proof is complete. O

REMARK 8.2. In Theorem if we know in advance that
WF(K) C (T*Q;\0) x (T*Q,\0),
then WF,(K) = () and can be reduced to
WF(w) C WF' (K) o WF(u). (8.36)

The set WF/(K) is called the twist of WF(K), and the operation “WF’(K)o” is called
canonical relation of the operator:

u(y) = w(z) == (K(z,y),u(y))
which takes K as its kernel. These can be generalized to the theory of Fourier integral
operators.
8.3. The wavefront sets of Fourier integral operators

Recall the notion of phase function given in Definition

THEOREM 8.12. Assume ¢ € C®(R" x RY) is a phase function of order 1, and a € S™
is a symbol. Define A(x) as

Ax) := /ei“o(x"g)a(a:ﬁ) de, (8.37)

where the integral is understood as an oscillatory integral. Then A induces a distribution
(also denoted as A) A € 2'(Q) for any domain Q C R", i.e. A: u € 2(Q) — I,(au) by

Au) = I (au) = (A, u) = /ew(x’e)a(a:ﬁ)u(:c) dz dé
in oscillatory integral sense. The wavefront set of A satisfies
|WF(A) C {(x, p:(2,0)); 9o(,0) =0, (x,0) ¢ Smo(a)}.| (8.38)

REMARK 8.3. When the following conditions are satisfied, the inclusion “C” in (8.38|)
can be improved to “=" (see contexts preceding [dHHU2, Theorem 3.9], [CCS*97, The-
orem 3.9]):

(1) the phase function ¢ is non-degenerate on Cy := {(z,0); po(x,0) = 0, (x,0) ¢
Smo(a)}, i.e. the N-(n + N) matrix d¢y is full rank on Cy, here

d¢9($, 9) = (¢9$($7 9) ¢99($, 0)) ;
(2) the map (z,0) — (z, pz(z,0)) is injective when restricted to Cy.
Readers may distinguish the A appeared in Theorem with the operator B defined as

Bu(zx) = /ei‘p(x’y’e)a(x,y, 0)u(y) dy de.

The A is a distribution while the B just defined is an operator, namely, A maps a function
to a scalar while B maps a function to another function.
However, A is a generalization of B, because

(Bu(z),v(z)) = / @y q(z,y, 0)u(y)v(z) de dy df
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= </ ei“"(x’y’e)a(x, y,0)dl, (v @u)(x,y))
= (Kp,v®u).

where B is defined as
Kp(ay) = [ €00 %a(a,y,6)ds

Hence the operator B can be turned into a form of (8.37)).
Moreover, we have Bu(x) = (Kp(z,y),u(y)), so by combining Theorems and
hopefully we can obtain WF(Bu).

SHORT PROOF OF THEOREM [8.12] This short proof is for summarizing the key idea of
proving this theorem and thus the details may not be rigorously correct. After this short
proof, we also present a formal proof of Theorem [8.12

According to the Definition ,we fix a cutoff function ¢ with ¢(zg) # 0 and compute

FA(E) = A(ge ) = (2m) /2 / P09 4 1)a (. 6) da 6,

and the basic idea is to use N times (with N large enough) the operator L := %

acting on e!#(@0)=2€) and the fact (8.3) to get the desired estimate. But in order to do so,
one needs to first address some singularities in the oscillatory integral. We have

oA~ [

R

. 9) -V ‘
= [ [ e e 0)a0)

”/ e e (x) ( / e 0|y (x,0)| N 0 a(x, 0) d6) d. (8.39)
R2 R

n
6

e_m'ggb(x)(/ @0 q(z,0) dg) dz

RY

Then as N be large enough, the Géva(a:, 0) will be integrable w.r.t. §. But we notice that
log(x,0)] ! has singularity at 6 = 0, so we first exclude the neighborhood of the origin of ¢
by using a cutoff function x with x(0) # 0 as follows

FA(E) ~ / @08 §() (B)a(x, 6) de df + / @ 4()(1 — x(6))a(x, 6) dz df

:/ eix'gqb(m)(/ ei‘p(x’e)x(ﬁ)a(xﬁ)de) dz
Ry

R

+ /R . e~ () ( / @ (1 — x(0))a(x,0) df) dx

T

+ / '@ =28 (1) (1 — x(0))a(x, 0) dz df
0¢T,,
=: [1(§) + 12(§) + I3(8),

where
Iy :={0;a(z,0) =0(0]">)}. (8.40)
The I;(£) and I2(§) are O(|£]~°) as || — 400, because these terms ng e @0y (0)a(x,0)do

and sz e (@0 (1 — x(0))a(x,#) df are smooth in terms of 2 (for the first term, it is because



8.3. THE WAVEFRONT SETS OF FOURIER INTEGRAL OPERATORS 88

the actual integral domain is compact, i.e. is contained in supp 6; for the second term, it is
because the integrand decays at infinity order). Then we can compute I3 as follows,

~ —iz-€ 309(‘%’9) Vo N i (z,0) (1 _ alz T
Ig(g)_/n oz )(/ (2,0)#0 and egzrz( lo(z,0)|2 JTeER 1 —x(@)alz,0)d0) d

n / () / oo, €7 XO)ala,0)0)
— 1O + T5().

Now here comes the key point: to obtain (¢)~", for I, we differentiate e~*¢
w.r.t. z, and for I; we differentiate (¥~ w.r.t. z.
We can estimate I4 by using the computation as in (8.39)),

~ —iz-€ @9(:1:79) Vo N io(z,0) (1 _ 0 0)do) d
14(0_/26 ¢(x)(/we(xe);éoand9¢rz( |00, 0)[? )RR = x())alz, 0)d6) da

< [ oy [ 50|y ,0) N9} (1 = x)a) d6) da,
n o (x,0)7#0 and 6¢T',

where the integer N can be arbitrary. And hence we have I4(§) = O(|¢|7°°) for the same
reason as Ij.
It is the I5 which finally decides WF(A). For £ # ¢, (x, ), we can have I3 as follows,

I5(§) = o (2.0)=0 e P@O=T0 6 (3)(1 — x(0))a(x, ) dz do (8.41)
(z.,0)¢Smo(a)
Gal2s0) 28 T Netagiee) )] () (1 x(6))a,0) e

x,0)=0, [( - 5
(ig)(¢8r)no(a) ilpz(z,0) — &|

(8.42)

 (pu(e,0) - &)y~ N N2y |a(x, 0)] da: dO

S (€)M (pu(x,0)) " ¢(x)(0)™ da A6
(z,0)¢Smo(a)

~ _Nl
= (&) / 0 (2.0)=0,
(2,0)¢Smo(a)

To guarantee the derivation from (8.41) to (8.42)), we need & # ¢, (z,0) for these (z,0)
which satisfy ¢, (x,0) = 0 and (z,0) ¢ Smo(a). We finished the proof. O

¢(2)(0)" M dz df ~ ()™,

FORMAL PROOF OF THEOREM [8.12. We do some preparation first. Define A as the
collection of subsets € in RY x (RF\{0}) where (z,¢) € Q = (2,t§) € Q for any ¢ > 0,

and B as the collection of subsets in R x qu. Then there is a one-to-one correspondence
between A and B, and we denote the one-to-one mapping as S,

S:QeA — SQ={(z,n); I eR"st. n=¢/[¢] and (x,&) € Q} € B.
Let T: (x,0) — (z,p.(x,0)). Note that ST = T'S. For any positive integer k, denote
Vi :i={(z,0) € Ry x R{ s [g(x,0)| < 1/k}. (8.43)
It can be checked that

o {Vi}r and {TVi} are decreasing in terms of k,
o Vi and T'Vj are closed in R x (R¢\{0}),
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o V., TV, € A,
o SVi and STV}, (=T SVj) are also closed in R} x S’g_l.

Now let’s assume
(z0,80) & TVi, (8.44)

then (zo,&o0/|&o0|) is not in STV}, which is a closed set. Therefore, there exists €; > 0 such
that

{(2,&/1€) 5 [z — 20| < €1, [€/1€] = &o/1&ol| < e} N STVi = 0. (8.45)
Because V(, g)¢(,0) is always assumed to be nonzero, the number
inf (lpa(z, 0)] + lpo (2, 0)])

|z—xzo|<er,HeSn—1

exists and is positive and we denote it as €3,

€9 1= inf (|pz(z, 0)] + |po(x,8)]) > 0. (8.46)

|Z*$0‘§€1,9€S”71
Let kg be any positive integer such that
ko > 2[1/ea]. (8.47)

Now, for any (z,0) € SVj,, we know (z,8) € Vj,, so (8.43) gives |pg(x,0)| < 1/ko < €2/2,
so from ([8.46)) we can conclude that

lox(z,0)] > €2/2>0 in W:={(x,0) € SVjy; |x —xo] < €1} (8.48)

Fix some ¢ € CX(B(zg,€1)). And x € C(R"™) is a cut-off function with support
containing the origin. Now we estimate ¢A(§). We have

GAE) = Alge™6) = 2m) " [ P02 g(z)a(,6) du do
~ / e P@N=2) (1) \ (0)a(x, 0) dz dO + / e P@O=2:9) (1) (1 — x(0))a(z, 0) dz df
:/ e g (x )(/n @0y (0)a(x,0) df) dx

eip(@,0)—a- €)¢(x)(1 —x(0))a(x,0)do dz

(z,0)eSmo’ (a)
i ! P@N=8) 4 (2)(1 — x(0))a(x, 0) dz db
(x 0)¢Smo’(a)
= 11(€) + B(€) + T;(6) (549

where Smo’(a) is an arbitrary subset of Smo(a) such that for every fixed z, the projection of
the intersect S((z, R¢)NSmo(a)) is a compact subset of the sphere S*~t. The (z, RY) means

{(z,£) € R} x Ry ; £ € R"}. The term I is easy to estimate. The ng e @0y (0)a(x, ) do
in I; is C*°-smooth in terms of z, so by using integration by parts we can have

|I,(8)] = ]/ e TEC(x) da| < Cpé™®, V€, Vmulti-index a. (8.50)
R
where C is some function in C2°(R™). The estimation (8.50|) gives

L€ <Cn(E)™N, V¢, VN eN. (8.51)

And I can be estimated as follows,

@I =1 [ ([ 00y @)atr,0)d0) da
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= | / [(ig70) e ™€) p(x) ( / @0 (1 = x(0))a(x, 0) d6) da|
R2 {0; (z,0)eSmo’ (a)}

=& T p(x) @0 (1 - x(0))a(x,0)do) | da.
Ry [ x(/{f)(e) S (@)} MO )} )

It is easy to check that the term in [ . ] are C*°-smooth and compactly supported w.r.t. z,
thus it is integrable. Therefore,

12(6)] < Cn (€)™, VE VN eN. (8.52)

Then we move on to I3,

I(6) = / @29 4 (2)(1 — x(0))a(z, 0) dz df
(Smo’(a))e
- / PN~ 41 (1 — y(0))a(x, 0) dz 6
(Smo’(a))°N(Vi,)

n / e P@N=8) (1) (1 — x(6))a(z, 8) dz db
(Smo’(a))eNVi,

=: 14(8) + I5(8), (8.53)

where (Smo’(a))¢ signifies the complementary set of Smo’(a). Note that in (V,)¢, the
lpg(x,0)| is no less that 1/kg (c.f. (8.43])), thus no singularity will accrue when |pg(zx, 6)]
appears in the denominator. Hence, for I we have

n© - | D=0 o) (1 = x(0))a(w, 0) dz d
(Smo’ (@))°N(Vi)©
= / emé o(z)( / @9 (1 — x(0))a(z,0) df) dz
/[( lele=g2)e €] ¢(x (/ @0 (1 — x(0))a(x,0) df) dz
~ i B P cie(@0) (1 _ alz z
& / > <5>3 (/ (1 - x(8))a(z,0) dd) d

B<a
~ —ix-& a—L
~ £ / [;a< 9O Pz
— ,0)-V ol
o[ <W>N<e P01 = x(0))alr, 0) d0) da
seo > [emscor o [om N an ar
B<a
< Cp€™%, V¢, Vmulti-index a. (8.54)

Now for the estimation of I5, we need some constraints on the direction of €. It is this

term that determines WF(A). Because (zo,&0) ¢ TV, (see (8.44)), according to (8.45),
there is a cone W C R¢\{0} such that

& eW and |Vyp(z,0) =& > C(|Vep(z,0)] + &), VE € W. (8.55)
Define L := 7i|(€iﬁ((3:%)) ?‘2 By using the fact that

0°Lf ()] S |Vap(x,0) — €| 1Z|aﬁf
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we can have, for all £ € W,

/ ! P@N=8) b (1)(1 — x(0))a(x, 8) dz db
(Smo’(a CﬂVkO

/(S - (6i(80($,9)—:c~€))¢(l,)(1 _ X(G))a(l‘, (9) dede

/ cilp(@0)—a-€) tr N (¢p(x)(1 — x(0))a(z,0)) dzdb
(Smo’(a Cmvko

A

(1+ lpa(, 0) = €))~N(0)™ dz b
supp(bXR"

(N4 N =N) < (o)™ / (161 - x (. 6/16]))2 ()™ dar A6
supp ¢ xRy

(by @4)) <™ / ()N dz b

supp ¢ xRy
<™ VN eN. (8.56)
Combining (8.44)), (8.47)), (8.49)), (8.51)), (8.52)), (8.53), (8.54) and (8.56)), we arrive at
pAE) S (€)™, €eW, VN eN, (8.57)

where the W is a cone containing &, and (xg, &) # (x, pz(z,0)) for these (z,0) satisfying
(z,0) € (Smo'(a))® N Vi,.
Therefore, for any kg > 2[1/e2]|, there holds
(12 62(2.0)); o, 0)] < 1/ko, (,0) € (Smo(a))})" < (WF(4))",
thus
WF(A) € {(x,0x(,0)); |po(x,0)] < 1/ko, (2,0) ¢ Smo(a)}.

Finally, let ko goes to zero and choose Smo’(a) to be arbitrarily close to Smo(a), we arrive

at the conclusion (8.38)). O
8.4. Applications

Now we are ready to apply those results.
8.4.1. Microlocality of ¥YDOs.

PROPOSITION 8.13. Assume a € ST®(R} x R x RY) is symbol and K is the kernel of
the corresponding YDO of a, then

|WF(K) C {(z,2;¢,-€); (z,2,€) ¢ Smo(a)}. | (8.58)
PROOF. Denote the corresponding YDO as A, then
(K(z,y),u@v(z,y)) = (K(z,y),u(r) @ v(y)) = (K(z,y),u(@))e,v(y))y

— (Auly),v(w) = (2m) " [ D ala, g, uleo(y) drdyd

=(2m)™" / ei(w_y)'ga(x, Y, &)u @ v(x,y) dedy dE.

Therefore, in the oscillatory integral sense,

K(z,y) = (2m)" / V(. y, ) de.
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According to Theorem [8:12] we have
WF(K) C {(@, y; oy (,4,8)) ; pelx,y,§) =0, (#,y,£) ¢ Smo(a)},
where p(z,y,&) = (x — y) - £&. Hence,
WF(K) C {(z,y:&, &) 2 —y =0, (z,y,&) ¢ Smo(a)}
={(z,2;¢,—¢); (z,2,£) ¢ Smo(a)}.
The proof is complete. O
THEOREM 8.14. Assume that A is a ¥DO, then for u € & we have

microlocality: ‘WF(AU) C WF(u)\ Smo(A). ‘ (8.59)
Moreover, if A is elliptic in the sense of Deﬁnition then Smo(A) =0 and
| WF(Au) = WF(u). | (8.60)

PrOOF. We have Au(z) = (K(z,y),u(y)) where K is its kernel, so according to Theo-
rem and Proposition [8.13] we can conclude

WF(Au) C (WF'(K) o WF(u)) UWF,(K)
= ({(z,2:£,€); (2,€) ¢ Smo(a)} o WF(u)) UD
= WF(u)\ Smo(a) = WF(u)\ Smo(A).
If A is elliptic, then according to the definition, we have
la(z,&)| > C()™, when z € R", |¢| > R,
for some constants m € R, C' > 0 and R > 0, so it is obvious that Smo(A) = (), thus by

(8-59,
WF(Au) € WF w.

Also, because A is elliptic, then by Theorem [6.6] we know A has a parametrix B such that
R:=BA-1€V¥™, so

WF(u) = WF(BAu — Ru) C WF(BAu) UWF(Ru) C WF(Au).
In total, WF(Au) = WF u. The proof is complete. O

LEMMA 8.15. Assume a is a symbol and u € &'(Q2). Denote the corresponding ¥DO of
a as A, then

‘WF(Au) N Smo(a) = 0. ‘ (8.61)
ProoOF. This is a straight forward outcome of (8.59). O

8.4.2. Pull-back of distributions.

THEOREM 8.16. Let 21 and Q9 be two domain in R™, and ¢: Q1 — Qs is an diffeomor-
phism. Then for any u € 9'(Q2), we have Yv*u € 2'(21), and

WF (") = {(z,"¢'|lan) 5 ($(x),n) € WF(u)}, (8.62)

where Y signifies the matriz whose (i-row, j-column) element is 0,07, and (*¢')~Y|, is the
inverse of transpose of the matriz ' evaluated at z, and (*4')~1|,n stands for the matriz
multiplication of the matriz (‘') |, and the vertical vector 7.

The mapping in (8.62]),

(, "V ]en) = ($(x),m)
is invariant on the cotangent bundle (see [Ma20b, for Theorem 18.1.17]).
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FIRST PROOF OF THEOREM [B.I6l It is obvious that ¢¥*u € 2'(£;).

For (yo,&0), because v is a diffeomorphism, we can find (g, 19) such that zo = ¥~ (yo)
and & = (¥71)'|y, - mo. Assume that (yo,&) ¢ WF(u). For a smooth cutoff function ¢,
satisfying ¢z, (o) # 1, we have

(ot 0) () = / g (@) u(z) do = / e~ g, (2)u(ip(x)) da
- / T WM, (T ) uly) W) (y = (@)

it —1 1
:/ AN (T <y)>|8d’ W)¢~"(y) - (¢u)(y) dy
= [ G @) (Gu)dy = [T OO 5, ) Gu() dgy
:/A A i Wn—y€) | Byo(y) - Pu(€) d¢ dy
|€o—¢1>1

+ / VT OMGE 5 () - Gu(e) de dy
|é0—€|<1

=0 + I,

where € := £/|¢| and the same for &. For convenience we have written ¢ ~(y) - 5 as
tap=1(y)n, where ' M signifies the transpose operation for any matrix M. By doing so it will
be more straightforward when we make derivatives. Here ¢y (y) is a generic function which
is C*°-smooth and is compactly supported w.r.t. y and whose precise definition may varies
from line to line.

For I, because |§ — €| > 1 and (yo,&) ¢ WF(u), we have |Gy~ |yn — €| = 3 1 and

\@(5)] < (€)~No for some integer Nyg. The number Ny comes from the fact that d)u is a
compactly supported distribution so its Fourier transform has (at most) polynomial growth.
Hence,

- L (COT 1 = &) V)N (mitw )00 - pu
Il_/|€o£|>1( (=) ]yn — €)? ) ( Y)Y By (y) - pu(€) dE dy

:/légbl“%l)’lw—@]ve“w WO Gy (y) - pul€) dé dy

S TN )] [Gu(©OIdgdy (N = Ny + V)
[§0—&I>1
< (py~M N2 500 ()] dy) - [Pu(€)| d
s [ @7 ([ 1awl ) - gue) e
S [ @M e s
[§o—&I>1

provided that No — Ny > the dimension of &.
For Is, we have

- S ((twil)/’yn) Vi)Y e~ W W) M) givE . du
e _/g A|<1< (1Y m)2 ) ( eV Gy (y) - du(€) dé dy

/é él<1<<tw‘1>’rw>‘Ne‘w1‘”‘” (V)Y (€% - By (y) - dul€) dé dy

1
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- /5 —€A|<1<17>_Ne_w1(y).77 ()N Byo () - du(€) ¢ dy

N

—-N N | ~ du) - - d
o7 [ @ (1wl Guce) g
s [ @V laes Y,
|€o—¢I<1
In total, we have |(@z,¢*u)"(n)| < ()~ for any integer N if 7 is in a small neighborhood
of 7ip where (¢(x0), (™) |yon0) ¢ WF(u), namely,

((@0), "™ |ymoymo) € WF(u) = (20,m0) € WF (" u).
Therefore,
(w0, m0) € WE@*u) = (1h(x0), (‘") ly(ag)m0) € WF (w),
WFE (¢ u) C {(x,n); ($(x), ("0 [y@ym) € WF(u)}.

Because 1 is invertible, we can obtain the opposite inclusion by looking at 1~ (y*u).

It can be shown that (Y1) |y = (¢¥/(2)) !, Indeed, by differentiating = = ! (¢(z))
w.r.t. & we obtain I = (1) [y ¢' (2), 50 (1) |y@) = (¢¥'(x)) !, and by taking transpose
we obtain

(o™ |y = (W' (@),

SO

WE(W*u) = {(z,n); (¥(2), (") "'an) € WF(u)}
= {(z,"¥'1s€) 5 (¥(x),€) € WF(u)}.

The proof is complete. U

There is also another proof for Theorem As in Remark we can use Theorems
and to obtain WF (¢*u).

SECOND PROOF OF THEOREM [B.16l The pull-back ¢* has a kernel: for f € C°(Qy)
and g € C*(€), we have

(Wf, g) = /w*f(x)g(x) dx = (27r)_”/ei(w(x)—y)ﬂf(y)g(x) dz dy dn
—(K,g® f), where K(z,y)= / (v~ gy

and ¢*u(z) = (K (z,y),u(y)). By Theorem [8.12] we have
WF(K) C {(z,9(x); "¢ [an, —n)},
and then by Theorem [B.1T] we have
WF(¢"u) C (WF'(K) o WF(u)) UWF,(K) = {(z,"4¥'|on) ; (¥(x),n) € WF(u)}.

The opposite inclusion can be obtained by looking at ¥~ 1*(¢*u). We obtain (8.62)). O
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Exercise
EXERCISE 8.1. Prove Lemme
EXERCISE 8.2. Prove that the condition (WF'(K)oWF(u))NO, = 0 guarantees (38.31]).
EXERCISE 8.3. Show the details in the computations and .



CHAPTER 9

Propagation of the singularities

9.1. Microlocal parametrix

To study the microlocal parametrix, we recall notion of conic sets and the smooth
direction “Smo” given in Definitions & and T*R™\0 stands for the cotangent bundle

with the zero section excluded. Now we generalize Definitions & microlocally, as
follows.

DEFINITION 9.1 (Microlocal parametrix). Assume m € R and 7' € ¥™. We call a YDO

S a left (resp. right) microlocal parametriz of T if there exists a nonempty open conic set
I' C T*R™\0 such that

Smo(ST —1I) =T (resp. Smo(TS —1I)=T).

We call § a microlocal parametriz of T if it is both a left and a right microlocal parametrix
under the same set I'.

DEFINITION 9.2 (Microlocal ellipticity). Assume m € R and a € S™, and A is the YDO
of a. Let I' € T*R™\0 be a open conic set. We say a (and A) is microlocally elliptic in T if
for some constants Cr > 0, R > 0,

la(z,)| > Cr()™, ¥(z,) €T, [¢| > R.|

We write | Char A := (U F)¢|, where .# = {I'; A is microlocally elliptic in '}, and the
notation Q¢ stands for the complement of Q in T*R™\0.

From Definition [9.2], it is obvious that Char A is always closed, and

A is microlocally elliptic in (Char A)°.

The following claim is trivial.
LEMMA 9.3. Char A = () if and only if A is elliptic in the sense of Definition [6.4)

LEMMA 9.4. Assume P is the VDO with principal symbol py,(x,&) homogeneous in &,
then Char P = p_.1(0), where p;,}(0) signifies the set {(z,&) € T*R™\0; pp(z, &) = 0}.

The proof is left as an exercise. The Char A and Smo(A) is closely related. Results in
can be modified to a microlocal version.

THEOREM 9.5 (Microlocal ellipticity < Microlocal parametrix). Let m € R and A €
U™ Assume A is microlocally elliptic in T', where T' = (Char A)¢ is non-empty. Then A
has a microlocal parametriz B. Moreover, they satisfy

| (Char A)° C Smo(I — BA). | (9.1)

Conversely, if A has either a right or a left microlocal parametrix, then A is microlocally
elliptic.

96
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PROOF. (=) Fix (z0,&) € I'. In the proof of Theorem we modify the function

X(§) to x(z,€) which is given as x(,&) := x(z — z0)x(£/I€] — &o/l0l). Define b;(z,&) :=
(1—-x(x,8)/a(z,§) - rj(x,&) (j > 0) the same way, with ro = 1, and follow the same steps

as in the proof of Theorem we can obtain VN € N,
0(AB)=1—-(1+r+-+rn)x—rnp +S NV 1=14+8V1incT,
as in (6.3]), so
o(I-AB)e S > in CT.
Due to the arbitrary of y, we conclude
o(I-AB)e S~ inT.

Hence, by Definition we obtain I' C Smo(/ — AB).

(<) Assume B is the right parametrix of A, then there exists a nonempty conic open
set I' € T*R™\0 such that Smo(AB — I) C T', which means a#b =1+ 57 in I'. where a
and b are symbols of A and B, respectively. Similar to the proof of Theorem [6.7, we can
prove that

a(,€)| > (€)™/2, when (2,6) €T, (€) > C/2.

Therefore, a is microlocally elliptic in I'. The proof for the left-case is similar.

The proof is complete. U

COROLLARY 9.6. For any A € T and any u € ., there holds
| WF(Au) C WF u C WF(Au) U Char A.

REMARK 9.1. Here we give a intuitive explanation of the second inclusion relation in
Corollary We picturize the singular direction of u and Au at a given point g in Fig.
and denote these two sets as P and @ respectively. On the left-hand-side of Fig. [I] we only
draw P while on the right-hand-side we draw P and @ together. We mark P with light gray
color and @ with dark gray. Because WF(Au) C WF u, @ is contained in P. Obviously,
P = QU (P\Q). Then what is P\Q? On P\Q, u is still singular while Au is not, so A
changed the singularity of u on P\@. Thus, A cannot be elliptic on P\ because microlocal
ellipticity does not change singularity. Therefore, P\@Q C Char A.

P :WFu at zg P\Q

Q : WF(Au) at xg

ey Zo
F1cure 1. Illustrative demonstration of WF v C WF(Au) U Char A.

PROOF OF COROLLARY [9.6l The “WF(Au) C WF«” is from Theorem When
Char A = T*R™\0, the claim is trivial. When Char A & T*R"™\0, (Char A)¢ is non-empty,
so by Theorem there exists a microlocal parametrix B of A, so we can have

WF u = WF(BAu+ (I — BA)u)
C WF(BAu) UWF((I — BA)u)
C WF(BAu) U (WF v\ Smo(I — BA)) (by (8:59))
= WF(BAu) U (WFu N (Smo(I — BA))°)
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C WF(BAu) U (WF u N Char A) (by Theorem [9.5))
= (WF(BAu) UWF u) N (WF(BAu) U Char A)
C WFun (WF(BAu) U Char A), (by (8:59))
which gives
WF u € WF(BAu) U Char A € WF(Au) U Char A.
The proof is complete. O
REMARK 9.2. Combining Corollary [9.6] and Lemma we have
A is elliptic: WF(Au) C WFu C WF(Au) & WF(Au) = WFu
{A is microlocally elliptic: WF(Au) C WFu C WF(Au) U Char A,
Hence, Corollary can be viewed as a generalization of .

REMARK 9.3. Corollary can be generalized to analytic wavefront set, see [H6r03,
Theorem 8.6.1]. See also [H6r03, Defintion 8.4.3] for the definition of the analytic wavefront
set.

The following result is important.

THEOREM 9.7. Assume u € ., then

WF(u) = N Char A.
AeVtoo AyeC

ProoF. By Corollary we have WFu C WF(Au) U Char A, so

WF(u) C ﬂ Char A.
AueC>®

For the another direction, assume (z¢, &) ¢ WF(u), then we shall construct a suitable ¥DO
A such that

Aue C®, and (z0,&) ¢ Char(A), (9.2)
which gives (z0,&0) ¢ [auece Char A, and so
(WF(w))*C ( () CharA)® = () CharAC WF(u),
AueC® AueC>®

and the proof will be finished.
It remains to construct such an operator A, and we present two ways to do it.
Method 1. Because WF(u) is closed and (z9,&) ¢ WF(u), so there exist bounded
open neighborhoods w, w’ of g and conic open neighborhoods V', V' of &, such that

{w cuw, VeV,
W' x V' NWF(u) = 0.
We denote I' :=w x V and IV := w’ x V’, then I' C IV and I' N WF (u) = 0, so
WF(u) C T, (9.3)
Choose a € C*°(R?") such that

suppa C I', and a(zg, &) =1, o
a(x,€) = a(z, £/|€]) when |¢] > 1. (9.4)
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It can be shown that a € S° (see Exercise and (zg,&) ¢ Char(1;). Moreover, because
a=0in I'° and I'° is a conic set, we can conclude
' Smo(7,) = (Smo(7y))°CT. (9.5)
Hence by Theorem we have
WEF(Tpu) € WF(u)\ Smo(T;,) = WF(u) N (Smo(7y))¢ € WE(u) N T (by (9.5))
= WF@)\I =0, (by (9.3))

which implies T,u € C*°. Condition ((9.2) is satisfied.

Method 2. Because (x0,&p) ¢ WF(u), there exists ¢ € C°(R"™) such that @({)
is rapidly decaying when £/[¢| and &y/|&| are close enough, say, ‘§/|£\ — 50/]£0|’ < ¢ for
certain € > 0. Hence we choose ¢ € C*°(S"1) such that 1(&/|€|) = 1 and () = 0 when

In = &/I%l| > € where n € S*7!. Choose x € C°(R™) such that x(£) = 1 when [¢] > 1/10
and x(&) = 0 when [¢| > 1/5. Now we define a operator A as follows

Ap(z) := (2m)" /R2 e Eh(y) (1= x()P(E/1EDe(y) dyds, ¢ € S (R™).
The purpose of the term “1 — x(§)” is to cutoff the singularity near £ = 0. By Theorem
we see A is a WDO of order 0 with symbol

a(z,€) = o(x)(1 — x(€)p(&/[€]) + 577, (9.6)
By we can show (xg,&p) ¢ Char A, see Exercise We can extend A from . to .,

and we have

Au(€) = (1 — () (£/|€)pu ),

so Au is rapidly decaying, which means Au € C*°. Condition (9.2)) is satisfied.
The proof is complete. (I

9.2. Bicharacteristics

To prove the main result, we first introduce the notion of bicharacteristics. The Hamil-
tonian H), of p is defined as:

H,:=V¢p-Vy—Vup-Ve. (9.7)
By Theorem [5.3] we can see

o([P,Q]) = Vebm - Vatm — VaPm - Vegm + 5™ 272

-2
— mem+Sm1+m2 ,

where my, mgy are the order of P and @, and p,,, ¢ are principal symbols of P and Q,

respectively.
In what follows we use the notation T*R™\0 := {(x,&) € T*R"™; £ # 0}. We introduce
the notion of bicharacteristic. For more details on the Hamiltonian flows, see [Sal07, §2].

DEFINITION 9.8 (Null bicharacteristic). Assume p € CH(T*R™\0;R), and I (3 0) is an
open connected subset of R. Let v, ¢,: 5 € I = (2(s),£(s)) € T*R™\0 be a curve. We call

a null bicharacteristic of p when it satisfies (9.8)-(9.9) below,
i(s) = Vep(a(s),£(s)), €(s) = —Vap(a(s),€(s)),
(2(0), £(0)) = (x0,&) € T"R™\0,

p(x0, %) = 0. (9.9)
And we call v, ¢, bicharacteristic of p when it only satisfies (9.8).



9.2. BICHARACTERISTICS 100

It can be easily seen that the values of p on any bicharacteristic curve will not change,
ie.
Vt,  P(Yaot(t)) = p(xo, &) = const.
Note that in Definition the function p is assumed to be real-valued. Without this
assumption, we cannot guarantee that (z(s),£(s)) are coordinate components.
Under certain assumptions on p, the domain of v can always be extended to R.

LEMMA 9.9. For small enough € > 0, there exists a unique solution v: (—e,€)
(z(s),&(s)) € T*R™\0 for the Hamiltonian equation (9.8). Moreover, assume either
(1) V(ze)p is uniformly bounded in {(x(s),£(s)/|£(s)]); s € (=€, €)}, p is homogeneous
of order 1;
(2) or Vgp is uniformly bounded in {(z(s),&(s)); s € (—¢€,€)}, p is homogeneous of
order p > 1, and Vep is bounded in uniformly bounded in {(x(s),£(s)/|£(s)]); s €
(=€, 6)};

then the domain of definition of v can be extended from (—e, €) to R.

PrROOF. Part 1: local solution. We use the Banach fixed-point theorem to show the
existence of local solution. For simplicity denote 79 := (x,&p) and n(s) := (z(s),£(s)) and
F(n(s)) :== (Vep(n(s)), —=Vap(n(s))), and we define a mapping .%:

F:ne C, T*R"\0) — no +/ F(n(r))dr € C(I,T*R™\0).
0
Fix e < (2|[VF|)~!, and let I = (—¢,¢€). Then for any n;, ne € C(I, T*R™\0), we have

|-Fm — Fnallom = II/O [F'(mi(7)) — F(n2(m)] d7lle(n
< el|[F(m) = Fm)llem < ellVElm —n2llem

1
< 5llm = mllow-

The Banach fixed-point theorem can be applied, and we can find a fixed point n of .# such
that

n(s) =no +/ F(n(r))dr, Vs€ 1 = n satisfies (9.8).
0

We proved the existence.

For the uniqueness, assume 71, 12 solve (9.8). Because 71(0) = 12(0), if there are not
equal, their derivatives must be differ at a point, but this violates the first two equations in
. The first part of the claim is proven.

Part 2: global solution (cf [Sal07, §2]). To obtain the global solution, we can extend
the local solution from (—e¢,€) to [—¢, €], and then just paste local solutions on [—e, €],
[e—€,e+¢€], [e+€ —€ e+ € + €], etc. Now we show the endpoints extensions can be
done. Assume 7 is a local solution on I = (—¢,¢€) as given in Part 1.

Assume V(, o)p is uniformly bounded in {(x(s),£(s)/|£(s)]); s € (—¢,€)}, and p is ho-
mogeneous of order 1. From we can have

%(!f(S)IQ) = 26(s) - £(5) = —2(s) - Vap(a(s),£(s)) = m(s)|€(s) ], (9.10)

where m(s) := —2€(s)-Vop(a(s), £(s)) with £(s) := £(s)/|€(s)|. Here because £(0) = & # 0,
and £(s) is continuous on s, so we can choose the interval I = (—e¢,€) to be small enough
such that £(s) # 0 for Vs € I, and this can make {(s) always well-defined. Solve (9.10) we

obtain R )
£(s)| = e~ lo () Vap(@(n)£()d7|£(0)|,
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S0
e~ M E(O)] < J(s)] < e g(s))
where M1 = SUDP{(q(s).(s)/I¢(s))); se(—e,)} | VaPls 80 {§(8); s € (—€,€)} is contained in a
bounded domain. Similarly, for x(s) we have
l(s)| = |Vep((s),£(9)| = [Vep(a(s), ()| < sup | Vep|

R xSn—1
where My = SUP{(2(s) ¢(s)/I¢(s))) : se(—e,e)} | Vep|- Note that we used the homogeneity of p
again. This gives
|2(s) — 2(0)| < sn'/2M,.
Or, if Vyp is uniformly bounded in {(z(s),&(s)); s € (—¢,€)}, p is homogeneous of
order 1 > 1, and V¢p is uniformly bounded in {(z(s),£(s)/|€(s)]); s € (—€,€)}, by |E(s)| =
|V.p(z(s),£&(s))| we can have

[€(s)] = 1£(0) +/0 £(r)dr| < [£(0)] +/0 [Vapldr < [£(0)] + sM < [€(0)] + eM].
where M| = SUD{(5(s) ¢(s)); s€(—e,e)} | VaP|- And similarly, for z(s) we have

()| = [Vep(x(s), E(s))| = €(s)]* [ Vep(a(s),E(5))] < (1€(0)] + M) Mj,

where Mj = SUD{(z(s).¢(s)/Ie(s)]); s€(~e.0)} | VePl-

Therefore, in both two cases the (x(s),£(s)) lives in a bounded domain when s € (—e, €),
thus due to the continuity of z(s) and £(s) we can extend the domain of definition of v from
(—€,€) to [—e, €.

After extension, we set new initial value (xg,&p) to be (z(€),£(€)) and by Part 1 we can
get a local solution on (e — €, e+ €') for some small enough €. By doing this repeatedly, we
can obtain a solution defined in R. The proof is complete. ([

LEMMA 9.10. Let a symbol p be homogeneous, i.e. p(x, ) = Ap(x,§) for A € Ry. Then
we have | Yz xe, (t) = (x(t), AE(t)) | for VA € Ry

PROOF. Because p is homogeneous, from we have
£(s) = Vep(x(s),§(s)) = Vep(z(s), A&(s)),
AE(s) = =AVap(a(s),€(5)) = =Vap((s), A(s)),
p(z0, Ao) = Ap(zo, o),

so (z(t), A{(t)) is also a solution of (9.8), with (z(0),A¢(0)) = (xo,A&). The proof is
done. g

LEMMA 9.11. Let T > 0. Assume a real-valued symbol p € S is homogeneous of order
1, and F € C*™([0,T] x (T*R™\0)) and ¢ € C(T*R™\0). Then there exists a unique
solution g € C*°(R x (T*R™\0)) satisfying
(O + Hp)q(t,z,&) = F(t,x,§),
4(0,2,€) = ¢(z,€),

where H,, is the Hamiltonian of p. The solution is given by

t
V(IL‘O,EO) € T*an q(t77x07§0(t)) = ¢($07£0) +/O F(T7 /7$O7§0(T)) dT'

More, when F and ¢ are homogeneous (with &) of order m € R, then q is also homogeneous
(with &) of order m € R.
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PROOF. Let g6, (t) = (2(t),£(t)) be the bicharacteristic of p starting from (xo,&o).
The existence of 74, ¢, is guaranteed by Lemma Then we have

(875 + HP)Q(ta (E(t), g(t)) = (at + VEP Vg — v:cp : Vﬁ)‘](ta :L‘(t), f(t))
= (O + @ (t) - Vo + £(t) - Ve)g(t, (t), (1))

= %(q(t, (1), £(1))),

so $(q(t,z(t),£(1)) = F(t,2(t),&(t)), which gives
q(t, =(t),£(t)) = q(0,2(0),£(0)) +/O B(r,a(r),£(7)) dr

=¢(w07§0)+/0 F(r,x(r),&(7)) dr.

For the homogeneity, fix (x, &) € T*R™\0, we solve the Hamiltonian equation with initial
point (z,£) and we can obtain a bicharacteristic v, ¢. Fix t € R, we set (z9,&o) := Yz,e(—1),
so reversely we represent (x,£) as vz, (t) = (2(t),£(t)). Because p is homogeneous of order

1, by Lemma [9.10 we have (2(t), A§(t)) = Yzo,x& (£), 50
Q(t7x7 >‘€) = q(t,m(t), )“S(t)) = Q(ta7I07A§0 (t)) = ¢(x07 )‘50) +/0 F(Tv Yz0, &0 (T)) dr
— b0 + [ F(r (o) () dr
0

= A"[¢(z0, o) +/0 F(r,2(7),8(7)) dr] = X" q(t, x(t),£(2))-

The proof is done. O

9.3. Propagation of singularities

For other literature on this topic, [Jos99, §10] is a good reference. See [Shu01, A.1.3]
and [GS94, §8] for different proofs. Now we are ready for the main result.

THEOREM 9.12. Assume m € R and P € U™ is classical WDO of real principal type,
and denote its principal symbol as py(z,&). We assume either

o uec . (R"), or,
e P is properly supported and u € P'(R™).
Let Pu € C* and pm(z0,&) = 0. If (x0,&) ¢ WF(u), then vz, N WF(u) = 0 where the

Vao,to 8 @ null bicharacteristic of py, defined in Definition @ In other words, for a null
bicharacteristic vy, it holds either v C WF(u) or vy N WF(u) = 0.

We are to find a time-dependent WDO Q(t,z, D) such that v, ¢ (t) ¢ Char(Q|;) and
Qliu € C*°, then WF(u) C WF(Q|su) U Char(Q|;) = Char(Q|;), and so vz, ¢ (t) ¢ WF(u).
The construction of such a ) uses Hamiltonian vector flow.

PRrOOF OF THEOREM [9.12l Step 1: change to U'. Choose an elliptic T, € ¥!~™ with
a(z,£) > 0 and a(z,£) be real-valued, then

WF (T, Pu) = WF(Pu) = T,Puc C* if and only if Pu € C*,

namely, T, does not change the wavefront set of Pu.
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Also, we can show T, does not change null bicharacteristics of the principal symbol of
P as follows. Assume (x(s),&(s)) solves with pp, (2(0),£(0)) = 0. Let’s assume we can
find a function f(s) such that

1) := [ ala(f). €0 ar

This is possible becauqe it amounts to find a fix point of the transform Zoao~y: C*°(R;R) —
C>(R;R) where Zg(s) := [J g(r)dr and ~y(s) := (z(s),&(s)).
After obtained such an f, we can see f is a bijection because f’ = a > 0. Denote
#(s) = x(f(5)), &(s):=E&(f(5)):
( (s),&(s)) is defined on a interval I, then we say (Z(s),£(s)) is defined on a interval
= Y1), s0 pm(2(s),&(s)) = 0 for s € I’, and we can have

&(s) = f'(s)i(f(5)) = a(z(f(5)),(f(5)) Vepm(x(f(5)),£(f(5))
= a(i(s),£(5)) Vepm(E(s), £(s))
= a(Z(s), £(5)) Vepm (), £(5)) + o (2(s), £(5)) Vea(@(s), £(5))

Similarly, we have

£(s) = —Va(apm)(E(s),£(s)).-

These mean the null bicharacteristic (z(s),&(s)) of p,, after a reparametrization, is also a
null bicharacteristic of ap,,. Note that ap,, is the principal symbol of T, P. Hence, to prove
the claim for P € ¥™ is equivalent to prove the claim for P € U!, so, in the rest of the
proof we assume P € ! of real principal type.

Step 2: find a t-dependent @ = Q(t,z, D) such that

Quli—p € C*™. (9.11)

Our plan is to construct a sequence of t-dependent YDOs Q; = Q,(t,z,D) € ]
(4 > 0) having classical symbol ¢;, and set @ ~ Zj Qj. Here Q;(t,x, D) € U7 means its
symbol ¢;(t,z,€) is in S77([0,T] x R? x RY), ie

0705”0 q;(t, 2, €)| < (&) 1A,

see Definition 2.4

Because (xo, &) ¢ WF(u), we have (z¢, t&) ¢ WF(u) for V¢ > 0, and we can find a open
conic neighborhood w of (zg, &) such that w N WF(u) = ). Choose a function x(z,§) € C*>
satisfying

{X(@"af) € C*, supp x C w, x(z, X&) = x(z,£) (VA > 0),
X

9.12
= 1 in a sufficiently small open conic neighborhood @ of (xg,&p). (912)

Set qo(0,x,&) == x(x,&) (the values of go for ¢ > 0 will be determined later), then w® C
Smo(Qo|t=0) where w® signifies the complement of the set w in 7*R"™, so by Theorem

WE(Qoule=0) = WF((Qoli=0)u) € WF(u)\ Smo(Qoli=0)
= WF(u) N (Smo(Q0|t:o))c
C WF(u) Nw =1,
so Qouli—o € C*°. For Q; (j > 1), we set their symbol at ¢t = 0 as zero, i.e.,
20(0,2,8) == x(z,§), ¢;(0,,)):==0(j=1), (9.13)
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then Qjli=0 € ¥~°°, s0 Qjul—g € C* for j > 1. By Theoremwe can find a () satisfying
Q ~ Ej Q; (thus Q is also t—dependent)ﬂ @ is of order 0. We can conclude (9.11)). The

values of g; (j > 0) for ¢ > 0 will be determined later in (9.21)).
Step 3: to make () satisfy

(D¢ + P)(Qu) € C*. (9.14)
To achieve (9.14) is equivalent to achieve
[D; + P,Q] € U~ (9.15)

because

(Di + P)(Qu) = [Dy + P,Qlu+ Q(Dy + P)u = [Dy + P,Qlu + QPu
= [D; + P,Qlu+ C>.

Here we used WF(QPu) C WF(Pu) = 0, so QPu € C*®. The fact QDyu = 0 comes from u
being independent of . Readers may note that in Step 2 we only determined ¢; on {t = 0},
while g; on {t > 0} hasn’t been fixed yet. Here we design ¢;|;~o to achieve (9.15).

We use the notation o(A) to signify the symbol of A. Because P is classical, we can
expand o(P) as ), py for some homogeneous symbols p € S 1=k Recall Step 1, we see
the integral curve of H,,, is the same as Hj, . Then by Theorem and Remark we
have

i)l _i)lel
oD Q) ~ 3 T aerap (Y a) - 3 E0 @pmon (X

|
P >0 a @ >0
) 1
:TZQj+(—Z)8tZQj_TZQj:gzatqm (9.16)
720 j=0 720 Jj=0

and

)l _i)lel
AP~ 3 T g (oY ) - 3 0o pag (X

o @ k>0 j=0 o k>0 j§>0
(=)l
=D 2> (OEp)os — ()0 )as
k>0j>20 « ’

(_@|a\ fe' le' « lo'
=Y Y E0 (@ - @),
020 j+k+|o|=¢ ’
= Z Z Ljk.aqj, (it can be checked that L oq; € Slfg)

(>1 jkt|al=
la|>1

—i)le
where the linear differential operator L;j o := %(8?]3;{)6? — (09pk)Og. Note that po is

the principal symbol of P so pg is real-valued. Also note that the restrictions £ > 1, |o| > 1
come from the fact that when |a| =0, L; ;o = pr — pr, = 0. It can be checked

1
o] =1 = Y Ljjatj = ~Hp,q;. (9.17)

la|=1

INote that such @ is not unique.
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We can group different terms in o ([P, Q)]) as follows,

o(P.Q)~ Hyyao+ Y Y Likad;

0>2 jtk+|a|=¢

ja|>1
1
=<Hpwo+> (D Likatit Y. Liked)
2 jtk+|al=t jtk+|al=¢
ja|>1, j=¢~1 jal>1, j<t-1
1
= S Hpodo + DAY Limtak—0ati+ Y. Ljkat))
22 al=1 Jk+|al=¢
|CM‘21,J<£71
1 1
= Hpoto+ ) (GHpowr+ D Likagy)  (by (17))
£>2 J+k+|al=t
la|>1, j<b—1
1 1
= ~Hpo + > (5Hpote + > Likeg) (C—L-1). (9.18)
£>1 Jtk+|al=6+1

loe|>1, 5<0

Combining (9.16)) with (9.18)), we obtain

1 1
oDt PQY~ =0+ Hp)ao+ Y (50 + Hpae+ Y Likag).  (919)
€21 jk+al=+1
laf =1, j<t

The requirement ((9.15]) thus amounts to require o([D; + P, Q]) € S™°°, namely,
(8t + Hpo)qo - 07

1
(0 + Hyo)ar = = > Ligeg, (21 (9.20)
k] al=0+1
la|>1, j<t
Combining (9.20]) with initial condition (9.13)), these ¢; (j > 0) can be solved iteratively in
[0,T] x T*R™ by using see Lemma (recall that pg is real-valued), and gives, V(x,&) €
T*R™M0,

QO(tv 7x,§<t)) = X(I’, 5),

t
qe(t, Ve e(t) = —i/ Z Ljkati(Ts Veg(r))dr, £>1. (9.21)
0

jtk+o|=t+1
lo|>1, 5<€

And they guarantee o([D; + P,Q]) € S™°°, so is achieved, thus is satisfied.
By iteration we can show the RHS of is of order —/, so the second conclusion in
Lemma [9.11] implies gy is homogeneous of order —/, so they are all classical symbols.
Step 4: apply a hyperbolic PDE result. Combining (9.11]) and (9.14)), we can conclude

{(Dt + P)(Qu) = F in Ry x R",

9.22
Quli=0 = ¢ on R", (522

for some F' € C*(Ry x R") and ¢ € C*°(R"). By using Lemma in advance, we
conclude Qu € C([0,T], C>(R™)).
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Step 5: conclusion. From Qu € C([0,T], C>*(R")) we see Q|tu € C* for each t € [0, 77,
where Q|; is an abbreviation of Q(t,z, D). Thus by Corollary we have

WF(u) C WF(Q|:u) U Char(Q|;) = Char(Q|:),

namely, WF(u) is a subset of Char(Q|;). Now we show 7, ¢ (t) ¢ Char(Q|;), so that we
can conclude vz, ¢, N WF(u) = 0.

The characteristic set Char(Q|:) is the complement of the microlocal elliptic set of Q|¢,
which only depends on the principal symbol of Q|;. The principal symbol of Q|; is qo(¢, z, ).
Recall 74 .¢,(t) = (x(t),£(t)). Hence, to show 7, ¢,(t) ¢ Char(Q|¢), it is enough to show
qo(t,-) is elliptic at vz, ¢, (t) = (x(t),£(t)), namely, to show

qo(t, z(t), A(t)) = C(N)™

for certain m € R. From (9.21) we see qo(t, V0.6 (t)) = Xx(x0,&). By Lemma the
homogeneity of py gives (z(t), A(t)) = Yao, 1 (t), SO

VA >0, qo(t,z(t), A(t)) = qo(t, Yap,ne0 (1)) (by Lemma [9.10)) (9.23)
= X(z0, Ao) = x(x0, o) (by (9.21), (9.12))
£0. (by (B12))
This means @ is elliptic at (x(t),£(t)) = Vao,g (t), Which means 7, ¢,(t) ¢ Char(Ql;). The
proof is complete. O

REMARK 9.4. The condition that P is of real principal type is used in the following
ways:

e real-valued: in Step 3, in order to use Lemma(9.11} p,, has to be real-valued; Also,
when p,, is real-valued, then R :=iP + (iP)* is of order 0. This is used in Step
4 which calls for Lemma

o |Vepm(z,€)| # 0 when p(z,£) = 0: related to the solvability of (0.21)? Every
(x,&) € T*R™\0 shall be reachable;

e homogeneity: the condition “py,(z, A§) = Apm(x,£)” is used at to guarantee
(£(0), AE(1)) = g0 1)

Theorem [9.12] can be interpreted by the following claim.

COROLLARY 9.13. Assume m € R and P € V™ is classical YDO of real principal type,
and denote its symbol as p(x,&). Assume Pu is well-defined and Pu € C*°. Then WF (u)
is made of null bicharacteristic curves v, ¢ for some (z,€) € p;,1(0).

PROOF. We see that P is a YDO with principal symbol p,,(x,§) homogeneous in &, so
we can apply Lemma to conclude Char P = p,-1(0). Also, when Pu € C*, by Corollary
we have WF(u) C Char P, so

WF(u) C p,}(0). (9.24)

For any (z,&) € WF(u), by we know (z,€) € p,,}(0). Denote as ;¢ the null
bicharacteristic of p,, passing through (z,&), then v, ¢ C p,;,,}(0) because the value of py, is
constant in bicharacteristics. According to Theorem we can conclude v, ¢ C WF(u). In
summary, for every (z,&) € WF(u) we have v, ¢ C WF(u) and v, ¢ is a null bicharacteristic,
so WF(u) is made of null bicharacteristic curves. O
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9.4. Cauchy problems of hyperbolic PDEs

LEMMA 9.14. Assume T > 0 and s € R, P € ¥' has a real-valued principal symbol.
Denote L = Dy + P. There exists a constant \g > 0 such that for any

u € CH([0,T], H¥(R™)) N C([0,T], H*TH(R™)),
we have

T
sup 6_>\tH’LL(t,')||Hs < Ju(0, ) || ms + 2/ 6_’\tHLu(t,-)HHs dt. (9.25)
te€[0,T] 0

PROOF. Denote Q = iP and L' =iL = 0; + Q. Then
o(@+Q") = o(iP + (iP)") = io(P — P*) = io(P) + §° — o(P) — 8] € 5",

because the principal symbol of P is real-valued. We denote R = Q + Q*, then R € ¥Y and
thus is bounded in L2
We prove the case s = 0 first. Denote f(t) := |le™*u(t,-)[|2,, then

F(t) = 2e7 MR (Dyu, u) — 2Mf(t) = 26 MR((L — Q)u, u) — 2\ f(t)
= 2e2MR(L'u, u) + e M (= Ru,u) — 2\ f(t)
< 2¢7 || Lu(t, )| 2 lult, )|z + e M| Rult, | gal|ult, )| 2 — 27 F(1)
< 2¢7 M Lu(t, )| 2 lu(t, ) 2 — @A = | RIDlleult, )17
< 2¢7 M| Lu(t, )| 2 u(t, g2, (when A > |[R]/2),

where || R|| is the L? operator norm. Hence, for any t € [0, 7],
t
e Pt )72 < Ju(0, )72 + 2/0 e || Lu(s, )l 2 lluls, )| 2 ds

T
< (0, )2 + 2 /0 2 Lut, g2 Ju(t, | 2 .

By denoting M := sup;c[o 1 e M||u(t, )| s, we can continue
T
M? < Jlu(0, )17 + 2/0 e P Lu(t, )| pallult, )l 2 dt

T
< Mu(0, )|l 2 + 2 / e M| Lut, || M dt
0

T
< M([Ju(0, )|l 2 +2 / e Lu(t, )| 12 db).
0

We arrive at the conclusion for s = 0.
For s # 0, we can do something similar as in Step 2 of the proof of Theorem This
completes the proof. O

Based on the energy estimate in Lemma we can obtain the following result.

LEMMA 9.15. Assume T > 0 and s € R, P € U has a real-valued principal sym-
bol. Let f € LY((0,T),H*(R™)) and ¢ € H*(R™). Then there is a unique solution
ue C([0,T], H*(R™)) of the PDE

{(Dt+P)u = fin (0,7) x R",

9.26
uli—o = ¢ on R", ( )
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PROOF. Step 1: variational formulation. Denote
X :={p e CF([0,T] xR"); (T, -) = 0}
r 1
)= [ (o) des o)

We say u € .7([0,T] x R™) is a weak solution of (9.26)) if u satisfies

/ (Dot PYo)dt = (), Vo€ X. (9.27)
0

To find a u € L*((0,T), H*) satisfying (9.27), we are to show [€(¢)| < ||(D¢ + P*)||p1p-s,
and the call for the Hahn-Banach theorem. Here || f|| ;17— is a shorthand for f(;r | f |l z—s dt.

Step 2: energy estimate. Because P € W! has a real-valued principal symbol, we
see —P* € U! and —P* also has a real-valued principal symbol. Apply Lemma to
Dy + (—P*) and ¢(T — t,z) we obtain

T
s e Mlo(T =, )l < lle(T, )l + 2/0 e (D + (=P ) (T — t, )|l it
telo,

which gives

T
sup Mot iwo <2 [ XD+ PIp(t, ) .
te[0,T] 0

SO

s € R, up et e < 26X [(Dy + Pl i (9.28)
te|o,

This means the map ¢ — (D; + P*)¢ is injective. (9.28)) can be understood as a coercive

condition.
Step 3: Hahn-Banach theorem. By using (9.28]), we can estimate ¢ as follows,

T T
0(p)] < / (@) d + (6, 9)] < / 1 ez el s+ 18l ez ol e

T
< /0 1l dt + llze) sup (e, s

te[0,7)

T
= C(/0 £ llezs dt + 101|122 ) 1(Dr + Pl p1gr—s-

Therefore, the linear functional ¢(y) is also a linear functional for (D; + P*)¢ € X under
the norm L'((0,T), H*). Because the dual space of L'((0,T), H=*) is L>=((0,T), H®), by
the Hahn-Banach theorem, there exists a u € L*((0,7), H®) such that
E((p) = (U, (Dt + P*)@)t,itv ng S X7
which is (9.27)). This u is a weak solution.
Step 4: weak to strong solution. Because u is a distribution, on (0,7") we have
Dyu+ Pu = f.
Because u € L>((0,T), H%), Pu € L>((0,T), H5™1).
Let f, ¢ be Schwartz, then f € L>([0,T], H®), so Dyu = f — Pu € L*((0,T), H*1),
which implies
u € C([0,T], H™1).
Again, f € C([0,T], H*"2) and Pu € C([0,T], H*"2), so Dyu = f — Pu € C((0,T), H*2),
which implies
we CH[0,T], H=2) nC([0,T), H*') with u(0) = ¢.
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Due to the arbitrary of s, we can conclude
u € CH([0,T], H*) N C([0,T), H*) with u(0) = ¢. (9.29)

Therefore, (u, (D; + P*)¢): » can be legally write as ((D¢ + P)u, ¢)t 5, which implies u is a
strong solution of ((9.26]).

Step 5: density arguments for f, ¢. (9.29) is true when f and ¢ are Schwartz. For
general f € L1((0,T), H*(R")) and ¢ € H*(R"), due to the density, we can find {f;} C .7
and {¢r} C . such that

fr = fin LY((0,T), H*(R™)), ¢}, — ¢ in H*(R™), and
(D¢ + P)ug = fr, uli—o = ¢p, ux € C1([0,T], H*) N C([0,T], H*™). (9.30)
From (9.30) and Lemma we can obtain
e Mlue — w oo,y < bk — dwllms + 2010k — fur) (& Lo 2re)
so {ug} is Cauchy in C([0,T], H®) and the limit v € C([0,T], H®) is a desired solution.
Step 6: uniqueness. By the energy estimate (9.25]) it is easy to show the uniqueness of

u.
The proof is complete. U

Exercise
EXERCISE 9.1. Proof Lemma [9.41
EXERCISE 9.2. Prove the function a constructed in (9.4) is in S°.

EXERCISE 9.3. Show that a defined in gives (xo,&) ¢ CharT,. Hint: to borrow
ideas from Lemma [6.17]
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