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Abstract. This is a introductory course focusing on some basic notions in pseudodif-
ferential operators (ΨDOs) and microlocal analysis. We start these lecture notes with
some notations and necessary preliminaries. Then the notion of symbols and ΨDOs are
introduced. In Chapter 3 we define oscillatory integrals of different types. Chapter 4 is
devoted to stationary phase lemmas. One of the features of the lecture is that stationary
phase lemmas are proved for not only compactly supported functions but also for more
general functions with certain order of smoothness and certain order of growth at infinity.
We build our results on stationary phase lemmas. Chapters 5, 6 and 7 cover main results
in ΨDOs and proofs are heavily built on Chapter 4. Some aspects of the semi-classical
analysis are similar to that of microlocal analysis. In Chapter 8 we introduce the notion of
the wavefront set, and Chapter 9 focuses on the propagation of singularities of solutions of

partial differential equations. Important results are circulated by black boxes and some
key steps are marked in red color. Exercises are provided at the end of each chapter.

Version: April, 2022.
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CHAPTER 1

Preliminaries

A good reference for these is [Won14, Chapters 1-5].

1.1. Notations

Rn: the Euclidean space. For x ∈ Rn, |x| :=
√
x2

1 + · · ·+ x2
n, and the inter produce

x · y :=
∑n

j=1 xjyj . The notation 〈x〉 := (1 + |x|2)1/2 will be frequently used throughout the

lecture. For two quantities A and B, we write A . B to signify A ≤ CB, and write A ' B
to signify C1B ≤ A ≤ C2B, for some generic positive constants C, C1 and C2. It can be
checked that 〈x〉 ' 1 + |x|.

Lemma 1.1. For any s ∈ R and any multi-index α, there exists a constant C independent
of x such that

|∂α(〈x〉s)| ≤ C〈x〉s−|α|, when |x| ≥ 1.

The proof is left as an exercise.
Cm(Rn;C) is the set of complex-valued functions that has continuous derivative up to

order m. C∞c (Rn) is comprised of C∞ functions with compact support.

The Fourier and inverse Fourier transforms of f are denoted as Ff (also f̂) and F−1f
(also f̌):

f̂(ξ) = Ff(ξ) := (2π)−n/2
∫
Rn
e−ix·ξf(x) dx,

f̌(ξ) = F−1f(x) := (2π)−n/2
∫
Rn
eix·ξf(ξ) dξ.

〈f, g〉 :=
∫
Rn f(x)g(x) dx, (f, g) :=

∫
Rn f(x)g(x) dx, where g(x) is the complex conjuga-

tion of g(x).

∂j := ∂
∂xj

, Dj :=
1

i
∂j , where i is the imaginary unit.

Multi-index: in Rn, a multi-index is α = (α1, . . . , αn) where αj are non-negative integers.
Dα := Dα1

1 · · ·Dαn
n , ∂α := ∂α1

1 · · · ∂αnn , and xα := xα1
1 · · ·xαnn , and the length of α is |α| :=

α1 + · · ·+ αn.

Lemma 1.2. Assume x ∈ Rn and α is a multi-index. Then

|xα| ≤ |x||α|.

Proof. We have

|xα| = |xα1
1 · · ·x

αn
n | = |x

α1
1 | · · · |x

αn
n | = |x1|α1 · · · |xn|αn

≤ |x|α1 · · · |x|αn = |x|α1+···+αn = |x||α|.
�

More on multi-index:

• β ≤ α means βj ≤ αj for j = 1, . . . , n;
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1.2. SCHWARTZ SPACE AND TEMPERED DISTRIBUTIONS 6

• the notion α− β is valid only when β ≤ α, and α− β := (α1 − β1, · · · , αn − βn);
• α! := α1! · · ·αn!;

• when β ≤ α,
(
α
β

)
:= α!

β!(α−β)! =
(
α1

β1

)
· · ·
(
αn
βn

)
, where

(αj
βj

)
=

αj !
βj !(αj−βj)! ;

A typical form of a linear differential operator is
∑
|α|≤m aα(x)Dα. If we denote a

polynomial p(x, ξ) :=
∑
|α|≤m aα(x)ξα where ξ ∈ Rn, then∑

|α|≤m

aα(x)Dα = p(x,D).

Lemma 1.3. Assume f, g ∈ C∞(Rn) and α is a multi-index. Then

Dα(fg) =
∑
β≤α

(
α

β

)
(Dα−βf)(Dβg).

The proof is left as an exercise.

1.2. Schwartz Space and tempered distributions

Definition 1.4 (Schwartz Space). Let ϕ ∈ C∞(Rn). For multi-indices α and β, we
define the semi-norm | · |α,β of ϕ as

|ϕ|α,β := sup
x∈Rn

|xαDβϕ(x)| < +∞. (1.1)

We call ϕ a Schwartz function when |ϕ|α,β < +∞ for any α and β. The set

{ϕ ∈ C∞(Rn) ; |ϕ|α,β < +∞, ∀α, β}
together with the topology induced by the set of semi-norms | · |α,β is call the Schwartz

space, denoted as S (Rn) .

The topology T is induced by {| · |α,β} is defined as follows. Choose

N(α, β; ε) := {ϕ ∈ S (Rn) ; |ϕ|α,β < ε}
to be open neighborhoods of point 0 ∈ S (Rn). Choose

N := {N(α, β; ε) ; α, β are multi-index, ε > 0}
to be a open neighborhood basis of 0, and ϕ+N the open neighborhood basis of ϕ ∈ S (Rn).
Then the topology T is generated by these open neighborhood basis, see [JS06, §1.8] for
more details.

Definition 1.5 (Convergence in Schwartz space). A sequence of functions {ϕj}j ⊂
S (Rn) is said to converge to zero in S (Rn) if

∀α, β, |ϕj |α,β → 0 j → +∞, (1.2)

denoted as ϕj → 0 in S (Rn).

Lemma 1.6. We have

FS (Rn) = S (Rn), ∂αS (Rn) ⊂ S (Rn).

The space S (Rn) are often be used as test functions set. There is also another commonly
used test functions set: C∞c (Rn). In Fourier analysis the set S (Rn) is more commonly used
than C∞c (Rn), and one of the reason is that S (Rn) is closed for the Fourier transform F .
The uncertainty principle claims that the Fourier transform of any compactly supported
function is impossible to be compactly supported, namely, FC∞c (Rn) 6= C∞c (Rn).

Lemma 1.7. C∞c (Rn) is dense in S (Rn).
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Proof. Fix a function φ ∈ C∞c (Rn) satisfying φ ≡ 1 when |x| ≤ 1, and φ ≡ 0 when
|x| ≥ 2, and 0 ≤ φ(x) ≤ 1.

For any ϕ ∈ S (Rn), denote ϕε(x) := ϕ(x)φ(εx), then {ϕε}ε>0 is a sequence in C∞c (Rn).
Then for any multi-index α and β, we have

|φ− φε|α,β = sup
x∈Rn

|xα∂β
(
ϕ(x)[1− φ(εx)]

)
| = sup

|x|≥1/ε
|xα∂β

(
ϕ(x)[1− φ(εx)]

)
|

≤ sup
1/ε≤|x|≤2/ε

|xα∂β
(
ϕ(x)[1− φ(εx)]

)
|+ sup
|x|≥2/ε

|xα∂βϕ(x)|

= sup
1/ε≤|x|≤2/ε

|xα∂βϕ(x)||1− φ(εx)|+O(ε) + sup
|x|≥2/ε

|xα∂βϕ(x)|

≤ sup
1/ε≤|x|≤2/ε

|xα∂βϕ(x)|+O(ε) + sup
|x|≥2/ε

|xα∂βϕ(x)|

≤ 2 sup
|x|≥1/ε

|xα∂βϕ(x)|+O(ε).

Because supRn |x2
jx
α∂βϕ(x)| < +∞, we have that |x2

jx
α∂βϕ(x)| is bounded in Rn, so

|x|2|xα∂βϕ(x)| is bounded in Rn, thus |xα∂βϕ(x)| ≤ Cα,β〈x〉−2 for certain constant Cα,β.
Therefore,

|φ− φε|α,β ≤ 2Cα,β sup
|x|≥1/ε

〈x〉−2 +O(ε)→ 0, ε→ 0.

The proof is complete. �

Lemma 1.8. Let f ∈ S (Rn). Then ∀ s ∈ R, we have

(1 + |x|2)sf(x) ∈ S (Rn).

Proof. Let α be a multi-index. Then

Dα
[
(1 + |x|2)sf(x)

]
=
∑
δ≤α

(
α

δ

)
Dδ
(
(1 + |x|2)s

)
· (Dα−δf)(x).

We should notice that |Dδ
(
(1 + |x|2)s

)
| can be always controlled by (1 + |x|2)tδ for certain

tδ ∈ R large enough:

|Dδ
(
(1 + |x|2)s

)
| ≤ (1 + |x|2)tδ , ∀x ∈ Rn.

Hence, for any non-negative integer k and multi-index α, we have

|(1 + |x|2)k ·Dα
[
(1 + |x|2)sf(x)

]
| ≤

∑
δ≤α

(
α

δ

)
(1 + |x|2)tδ+k|(Dα−δf)(x)|

≤
∑
δ≤α

(
α

δ

)
Ck,α,δ = Ck,α < +∞.

We proved the conclusion. �

Schwartz functions are these who decay fast enough. Now we introduce another type of
functions which grow at infinity, but with a mild speed. These functions are called tempered
functions.

Definition 1.9 (Tempered functions). Let f be a measurable function defined on Rn
such that

sup
x∈Rn

∣∣(1 + |x|)−mf(x)
∣∣ < +∞

for some positive integer m. Then we call f a tempered function. If f is continuous, then
we call it continuous tempered function.
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Lemma 1.10. Assume f is a smooth function such that ∂αf are tempered functions ∀α,
then we have f ·S (Rn) ⊂ S (Rn).

The proof is left as an exercise.

Definition 1.11 (Tempered Distributions). A linear functional T is called a tempered
distribution if for any sequence {ϕj}j of functions in S (Rn) converging to zero in S (Rn),
we have

T (ϕj)→ 0, (j → +∞).

It can be checked that the set of tempered distribution, denoted as S ′(Rn) , is the

dual of Schwartz Space S (Rn).
Recall the semi-norm | · |α,β defined in (1.1). We define a new norm | · |m as

|ϕ|m :=
∑

|α|, |β|≤m

|ϕ|α,β,

It can be seen that |ϕ|m ≤ |ϕ|m+1.

Lemma 1.12. “T ∈ S ′(Rn)” is equivalent to the following statement:

there exists a constant C such that ∃m ∈ {0} ∪ N+ s.t. |T (ϕ)| ≤ C|ϕ|m , ∀ϕ ∈ S (Rn).

Proof. (⇐) Assume ∃m ∈ {0} ∪ N+ s.t. |T (ϕ)| ≤ C|ϕ|m, ∀ϕ ∈ S (Rn). Then for
every sequence {ϕk}k ⊂ S (Rn) satisfying ϕk → 0 (k → +∞), we have |ϕk|m → 0 (k →
+∞). So |T (ϕk)| ≤ C|ϕk|m → 0 (k → +∞). This means T ∈ S ′(Rn).

(⇒) Assume T ∈ S ′(Rn). Suppose that the claim is not true, then for every positive
integer M , and every m ∈ {0} ∪ N+, there exists ϕM,m ∈ S (Rn) such that

|T (ϕM,m)| > M |ϕM,m|m, so |T (ϕM,m/(M |ϕM,m|m))| > 1.

Let φM,m = ϕM,m/(M |ϕM,m|m), then |φM,m|m = 1
M and |T (φM,m)| ≥ 1. Further, we denote

φM := φM,M , then |φM |M = 1
M and

|T (φM )| ≥ 1, ∀M ∈ N+. (1.3)

Now for every m ∈ {0} ∪ N+, when j is large enough, we have

|φj |m ≤ |φj |j =
1

j
→ 0 (j → +∞).

So according to the Definition 1.5, we have φj → 0 in S (Rn), so according to the definition
of tempered Distributions we shall have |T (φj)| → 0. But this is contradictory with (1.3).

The proof is complete. �

The notion of “tempered function” and “tempered distribution” are closely related.
Every tempered function f defines a tempered distribution Tf ∈ S ′(Rn) by the following
way:

Tf (ϕ) :=

∫
Rn
f(x)ϕ(x) dx, ∀ϕ ∈ S (Rn).

At the first glance, the definition of tempered distribution is not a generalization of
the definition of tempered function. But the following theorem will characterize tempered
distributions through tempered functions.

Theorem 1.13 (Schwartz representation Theorem). Every T ∈ S ′(Rn) can be repre-
sented as a sum of certain order of derivative of continuous tempered functions in S (Rn),
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i.e. for every T ∈ S ′(Rn), there exist a finite collection Tα,β of bounded continuous functions
such that

T =
∑

|α|+|β|≤m

xαDβTα,β

See §1.4 in https://math.mit.edu/~rbm/iml/Chapter1.pdf

Theorem 1.14. For 1 ≤ p ≤ +∞, there holds S (Rn) ⊂ Lp(Rn) ⊂ S ′(Rn).

1.3. Fourier transforms

Definition 1.15 (Fourier Transform on S (Rn)). Let f ∈ S (Rn), then the Fourier
transform of f is defined as

(Ff)(ξ) := (2π)−n/2
∫
Rn
e−ix·ξf(x) dx, ∀ ξ ∈ Rn,

where x · ξ =
∑n

i=1 xiξi. We also denote the Fourier transform of f as f̂ .

Definition 1.16 (Inverse Fourier Transform). Let f ∈ S (Rn), then the inverse Fourier
transform of f is defined as

(F−1f)(x) := (2π)−n/2
∫
Rn
eix·ξf(ξ) dξ, ∀ ξ ∈ Rn.

We also denote the inverse Fourier transform of f as f̌ .

Lemma 1.17. For every f, g ∈ S (Rn), we have:

(1) F ,F−1 : S (Rn)→ S (Rn) are linear bijection;

(2) 〈f̂ , g〉 = 〈f, ĝ〉;
(3) (f, g) = (f̂ , ĝ). (Parseval’s Relation);

(4) F(f ∗ g) = (2π)n/2f̂ · ĝ;

(5) F(f · g) = (2π)−n/2f̂ ∗ ĝ.

Let’s define an operator

R : f(x) ∈ S (Rn) 7→ (Rf)(x) = f(−x) ∈ S (Rn).

Then these four operators {I,R,F ,F−1} act very like {1,−1, i,−i}. Denote a multiplication
operation Xj as Xjϕ(x) := xjϕ(x). We have the following relations:

Proposition 1.18.
(1.a) RF = FR = F−1;

(
(−1) · i = i · (−1) = −i

)
(1.b) RF−1 = F−1R = F ;

(
(−1) · (−i) = (−i) · (−1) = i

)
(1.c) FF = F−1F−1 = R;

(
i · i = (−i) · (−i) = −1

)
(1.d) RR = I.

(
(−1) · (−1) = 1

)
(2.a) FDj = XjF , FXj = −DjF ,
(2.b) F2Dj = −DjF2, F2Xj = −XjF2.

Theorem 1.19 (Plancherel Theorem). F and F−1 defined on S (Rn) can be extended
uniquely to a unitary operator on L2(Rn).

Proof. C∞c (Rn) ⊂ S (Rn) ⊂ L2(Rn) and C∞c (Rn)
‖·‖L2(Rn) = L2(Rn), So S (Rn) is

dense in L2(Rn) with respect to the L2 norm.
For any f ∈ L2(Rn), let {ϕn}n ⊂ S (Rn) such that ‖ϕn − f‖L2(Rn) → 0 (n → +∞),

then
‖Fϕm −Fϕn‖L2(Rn) = ‖F(ϕm − ϕn)‖L2(Rn)

https://math.mit.edu/~rbm/iml/Chapter1.pdf


1.3. FOURIER TRANSFORMS 10

and by the Parseval’s Relation we can continue

‖Fϕm −Fϕn‖L2(Rn) = ‖ϕm − ϕn‖L2(Rn) → 0, (m,n→ +∞).

Therefore {Fϕn}n is a Cauchy sequence in L2(Rn) and has a limit. We denote the limit as
Ff and assign it to f as the Fourier transform of f . �

The Fourier transform and inverse Fourier transform can also be uniquely extended on
S ′(Rn).

Definition 1.20 (Fourier Transform on S ′(Rn)). Let T ∈ S ′(Rn), then the Fourier
transform and inverse Fourier transform of T are defined to be the linear functionals FT
on S (Rn) given by

(FT )(ϕ) := T (ϕ̂), ∀ϕ ∈ S (Rn),

(F−1T )(ϕ) := T (ϕ̌), ∀ϕ ∈ S (Rn).

Theorem 1.21. For every ϕ ∈ S (Rn), T ∈ S ′(Rn), we have:
(1) F ,F−1 : S ′(Rn)→ S ′(Rn) are linear continuous bijection.

(2) F(ϕ ∗ T ) = (2π)n/2ϕ̂ · T̂ ;

(3) F(ϕ · T ) = (2π)−n/2ϕ̂ ∗ T̂ .

The Proposition 1.18 also holds on S ′(Rn). The operator R for T ∈ S ′(Rn) is defined
as:

(RT )(ϕ) := T (Rϕ), ∀ϕ ∈ S (Rn).

The Fourier transform are both (1,+∞)-type and (2, 2)-type bounded. And we have
Lp(Rn) ⊂ L1(Rn) +L2(Rn) when 1 < p < 2. Therefore we can define the Fourier transform
F on L1(Rn) + L2(Rn) by (1.4) and then study the boundedness of Fourier transform on
Lp(Rn) with 1 < p < 2. For details about these L1(Rn) + L2(Rn) things, please Google
“Riesz–Thorin theorem”. Therefore according to the Marcinkiewicz interpolation theorem
(see [Ste70, Appendix B]), we have the following result.

f = f1 + f2 ∈ Lp(Rn),

f1 ∈ L1(Rn), f2 ∈ L2(Rn),

F1 : Fourier transform from L1(Rn) to L1(Rn),

F2 : Fourier transform from L2(Rn) to L2(Rn),

F(f) := F1(f1) + F2(f2).

(1.4)

Theorem 1.22 (Hausdorff-Young inequality). Define the Fourier transform on L1(Rn)+
L2(Rn) by (1.4), then there exists a constant Cp such that for all f ∈ Lp(Rn), (1 ≤ p ≤ 2),
we have

‖f̂‖Lp′ (Rn) ≤ C‖f‖Lp(Rn),

where 1 ≤ p ≤ 2 and 1/p+ 1/p′ = 1.

Proof. We know that F and F−1 are bounded from L1(Rn) to L∞(Rn) and L2(Rn)
to L2(Rn). So according to Marcinkiewicz interpolation theorem, ∀t ∈ [0, 1], F and F−1

are bounded from Lt1(Rn) to Lt2(Rn), where
t1 =

(
t · 1

2
+ (1− t) · 1

)−1

=
2

2− t

t2 =

(
t · 1

2
+ (1− t) · 0

)−1

=
2

t

.

Let p = t1 p
′ = t2, then we proved the theorem. �
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Exercise

Exercise 1.1. Prove Lemma 1.1.

Exercise 1.2. Prove Lemma 1.3.

Exercise 1.3. Prove Lemma 1.10.



CHAPTER 2

Pseudodifferential operators

In this chapter we introduce the pseudodifferential operators, and in most of the place
we abbreviate it as ΨDOs. First, we introduce symbols and its asymptotics. Then the
ΨDOs are its kernels are defined. Finally, we prove an important property of ΨDOs–the
pseudolocal property. Other references are [Won14, Chapter 6], [GS94, §1 & §3].

2.1. Symbols

Recall the general form p(x,D) =
∑
|α|≤m aα(x)Dα of the linear differential operators

mentioned is §1.1. For a test function ϕ, we have

p(x,D)ϕ(x) =
∑
|α|≤m

aα(x)Dαϕ(x) =
∑
|α|≤m

aα(x)F−1{D̂αϕ}(x)

=
∑
|α|≤m

aα(x)F−1{ξαϕ̂}(x)

=
∑
|α|≤m

aα(x)(2π)−n/2
∫
Rn
eix·ξξαϕ̂(ξ) dξ

= (2π)−n/2
∫
Rn
eix·ξ

∑
|α|≤m

aα(x)ξαϕ̂(ξ) dξ

= (2π)−n/2
∫
Rn
eix·ξp(x, ξ)ϕ̂(ξ) dξ.

This observation encourages us to define operators by functions p(x, ξ).

Definition 2.1 (Kohn-Nirenberg symbol). Let m ∈ (−∞,+∞). Then we define Sm to
be the set of all functions σ(x, ξ) ∈ C∞(Rn × Rn;C) such that for any two multi-indices α
and β, there is a positive constant Cα,β, independent of (x, ξ), such that

|(Dα
xD

β
ξ σ)(x, ξ)| ≤ Cα,β〈ξ〉m−|β|, ∀x, ξ ∈ Rn

holds. We call any function σ in Sm a symbol of order m. We write S−∞ = ∩m∈RSm and
S+∞ = ∪m∈RSm.

Example 2.2. Here we give some examples of symbols.

•
∑
|α|≤m aα(x)ξα is a symbol of order m when aα ∈ S (Rn);

• S (Rn) ⊂ S−∞;
• Fix a bounded ψ ∈ C∞(Rn), then ψ(x)〈ξ〉m is a symbol of order m;
• Fix a φ ∈ C∞c (Rn) with φ(0) = 1, then (1−φ(ξ))(1 + |ξ|)m is a symbol of order m.

Lemma 2.3. Assume σj ∈ Smj (j = 1, 2), then σ1σ2 ∈ Sm1+m2. ∂ασ1 ∈ Sm1−|α|.

The proof is left as an exercise.
One can also define a more general symbol which the effect of x is taken into consider-

ation, and the dimension of x variable and ξ variable can be different.

12
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Definition 2.4. Let m ∈ (−∞,+∞) and 0 ≤ δ < ρ ≤ 1. Then we define Smρ,δ to be the

set of all functions σ(x, ξ) ∈ C∞(Rn1 × Rn2 ;C) such that for any two multi-indices α and
β, there is a positive constant Cα,β, depending on α and β only, for which∣∣(Dα

xD
β
ξ σ)(x, ξ)

∣∣ ≤ Cα,β〈ξ〉m−ρ|β|+δ|α|, ∀x ∈ Rn1 , ξ ∈ Rn2

holds. We also call any function σ in Smρ,δ a symbol.

The Kohn-Nirenberg symbol Sm = Sm1,0. In what follows, we only focus on Sm, and the
situations for Smρ,δ shall be followed in similar manners.

Now we introduce an important notion: the asymptotic expansion of symbols.

Definition 2.5 (Asymptotics). Let symbol a ∈ Sm and aj ∈ Smj (j = 0, 1, · · · ) where
the orders mj satisfies

m = m0 > m1 > · · · > mj > mj+1 → −∞, j →∞.
If

a−
N∑
j=0

aj ∈ SmN+1 ,

holds for every integer N , we write

a ∼
∑
j

aj in Sm,

and we call {aj} an asymptotics of a. The a0 is called the principal symbol of a.

We often write a = b+ Sm as a shorthand of a = b+ r for some r ∈ Sm. Then we can
summarize Definition 2.5 as follows,

a ∼
∑
j

aj in SmN+1 ⇔ a =

N∑
j=0

aj + SmN+1 .

Now let’s randomly pick up some m, mj that satisfy the requirement in Definition 2.5,

and randomly pick up aj ∈ Sm
j
. A natural question is to ask, does there exist a ∈ Sm such

that a ∼
∑

j aj in Sm? The answer is yes.

Theorem 2.6. For any m and mj satisfying

m = m0 > m1 > · · · > mj > mj+1 → −∞, j →∞,
and for any aj ∈ Smj , there exists a symbol (not unique) a ∈ Sm such that a ∼

∑
j aj in Sm.

When x → +∞, 1
1−1/〈x〉 = 1 + 1/〈x〉 + 1/〈x〉2 + O(1/〈x〉3). Arbitrarily pick up αj , is

there a function f(x) such that in [1,+∞),

f(x) =
∑

0≤j≤N
αj/〈x〉j +O(1/〈x〉N+1), x→ +∞, (2.1)

holds for all N ∈ N? The answer is no and an example is αj := j! (the convergence
radius goes to infinity as N grows). The problem is that αj/〈x = 1〉j will be too big when
j → +∞. However, we can fix this problem by cutoff, so that there exist a function f (not
unique!) such that (2.1) holds on intervals [Aj ,+∞) where the Aj is in accordance with aj ,
A1 < A2 < · · · . The key step is to choose a cutoff function χj to cutoff term αj/〈x〉j such
that

χj(x)αj/〈x〉j ≤ 1/2j , or 1/3j etc. (2.2)
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The following function satisfies the requirement:
χj ∈ C∞(R),

χj ≡ 0, |x| ≤ 2(αj)
1/j ,

χj ≡ 1, |x| ≥ 1 + 2(αj)
1/j ,

0 ≤ χj ≤ 1, otherwise.

(2.3)

The requirement (2.3) can also be realized by fix some χ satisfying{
χ ∈ C∞(R), 0 ≤ χ(x) ≤ 1

χ ≡ 0 when |x| ≤ 1, χj ≡ 1 when |x| ≥ 2.
(2.4)

and then set χj(x) := χ(εjx), where the εj shall be chosen according to (2.3).

Sketch of the proof of Theorem 2.6. Choose suitable coefficients εj and define

a(x, ξ) :=
∑
j≥0

χ(εjξ)aj(x, ξ), x, ξ ∈ Rn.

It can be checked that χ(εjξ) ∈ S0. For any fixed (x0, ξ0), there is only finitely many terms
in
∑

j≥0 χ(εjξ0)aj(x0, ξ0) which are non-zero, so a(x, ξ) ∈ C∞(Rn × Rn;C). Moreover, we
need to show first a is a symbol, and second a is an asymptotics of aj .

First, we show that a ∈ Sm. It can be checked that for any multi-index β,

|Dβ
ξ (χ(εjξ))| ≤ Cβ〈ξ〉−β, ∀ξ ∈ Rn,

where the constant Cβ is independent of εj . we notice that every term χ(εjξ)aj(x, ξ) is in
S0+mj = Smj , so

Dα
xD

β
ξ (χ(εjξ)aj(x, ξ)) = χ(2εjξ)D

α
xD

β
ξ (χ(εjξ)aj(x, ξ))

= χ(2εjξ)
∑
β′≤β

(
β

β′

)
Dβ′

ξ (χ(εjξ)) · (Dα
xD

β−β′
ξ aj)(x, ξ)

≤ χ(2εjξ)
∑
β′≤β

(
β

β′

)
Cβ′〈ξ〉−|β

′| · Cα,β,β′〈ξ〉mj−|β|+|β
′|

= χ(2εjξ)
∑
β′≤β

(
β

β′

)
Cβ′Cα,β,β′〈ξ〉mj−|β| = χ(2εjξ)Cα,β〈ξ〉mj−|β|

= Cα,β〈ξ〉mj−mχ(2εjξ) · 〈ξ〉m−|β|

≤ Cα,β(2εj)
m−mjχ(2εjξ) · 〈ξ〉m−|β|

≤ Cα,β(2εj)
m−mj · 〈ξ〉m−|β|,

where the change “〈ξ〉mj−m → (2εj)
m−mj” is due to the presence of χ(2εjξ). Hence,

|Dα
xD

β
ξ a(x, ξ)| ≤ 〈ξ〉m−|β| ·

∑
j≥0

Cα,β(2εj)
m−mj .

We choose εj to decrease fast enough such that
∑

j≥0Cα,β(2εj)
m−mj is finite for every α, β

(see [Won14, Theorem 6.10] for details). We proved a ∈ Sm.
Second, to show a ∼

∑
j aj in Sm, we see

a−
∑

0≤j≤N
aj =

∑
0≤j≤N

[χ(εjξ)− 1]aj(x, ξ) +
∑

j≥N+1

χ(εjξ)aj(x, ξ)

∈ S−∞ + SmN+1 = SmN+1 .
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The proof is complete. �

2.2. Pseudodifferential operators

2.2.1. Some basics about the ΨDOs. Based on the notion of symbols, we introduce
the pseudodifferential operators.

Definition 2.7 (Pseudodifferential operator, ΨDO). Let σ be a symbol. Then the
pseudo-differential operator Tσ, defined on S (Rn) and associated with σ, is defined as

(Tσϕ)(x) := (2π)−n/2
∫
Rn
eix·ξσ(x, ξ)ϕ̂(ξ) dξ

= (2π)−n
∫∫

Rn×Rn
ei(x−y)·ξσ(x, ξ)ϕ(y) dy dξ , ∀ϕ ∈ S (Rn).

We denote the set of ΨDOs of order m as Ψm We write Ψ−∞ = ∩m∈RΨm and Ψ+∞ =
∪m∈RΨm.

Example 2.8. Here we give some examples of ΨDOs:

• −∆ ∈ Ψ2, with symbol |ξ|2;
•
∑
|α|≤m aα(x)Dα ∈ Ψm, with symbol

∑
|α|≤m aα(x)ξα;

• (I −∆)m/2 ∈ Ψm, which is defined by the symbol 〈ξ〉m = (1 + |ξ|2)m/2;
• The DtN map of the Calderón problem is a ΨDO living on the boundary, see

[LU89].

It is an interesting question to ask for the symbol when given a certain ΨDO.

Example 2.9. Some simple ΨDOs whose symbol are also simple:

• D 7→ ξ;
• −∆ = D ·D, so −∆ 7→ |ξ|2.

Similar to Lemma 2.3, we have the following claim, whose proof will be provided in
Theorem 5.3.

Lemma 2.10. Assume σj ∈ Smj (j = 1, 2), then Tσ1 ◦ Tσ2 ∈ Ψm1+m2.

We show that the map σ 7→ Tσ is a bijection.

Lemma 2.11. map σ 7→ Tσ ∈ L(S (Rn),S (Rn)) is a bijection.

Proof. The ΨDO Tσ is defined by σ, so the surjectivity is obvious. The injectivity
amounts to prove Tσ = Tτ ⇒ σ = τ .

Let’s assume σ and τ are two symbols and Tσ = Tτ , then∫
eix·ξ[σ(x, ξ)− τ(x, ξ)]ϕ̂(ξ) dξ = 0

holds for any x ∈ Rn and any ϕ ∈ S (Rn). Replace ϕ by its inverse Fourier transform, and
fix x to some x0, we can see∫

eix0·ξ[σ(x0, ξ)− τ(x0, ξ)]ϕ(ξ) dξ = 0.

The arbitrary of ϕ gives

eix0·ξ[σ(x0, ξ)− τ(x0, ξ)] = 0, ∀x0 ∈ Rn.
And the arbitrary of x0 gives σ(x0, ξ) = τ(x0, ξ) for ∀x0 ∈ Rn. The injectivity is proved.
We arrive at the conclusion. �
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Remark 2.1. For people who the first time encounter the form

Tσϕ(x) '
∫
Rn
eix·ξσ(x, ξ)ϕ̂(ξ) dξ,

one may think that Tσϕ(x) is just the inverse Fourier transform of σ(x, ξ)ϕ̂(ξ), and conse-
quently, σ(x, ξ)ϕ̂(ξ) can be recovered by taking the Fourier transform of Tσϕ(x). Unfortu-
nately this is not true. The function σ(x, ξ)ϕ̂(ξ) depends not only ξ but also x, so that is
not a Fourier transform anymore. When a symbol a is independent of x, we have

F{Tσϕ}(ξ) = a(ξ)ϕ̂(ξ).

But when a depends on x, the Fourier transform of (Tσϕ)(x) is generally NOT a(x, ξ)ϕ̂(ξ).
In generally, we cannot use the expression above to get the symbol a:

a(x, ξ)ϕ̂(ξ) 6= F
{

(Tσϕ)(·)
}

(ξ).

Similar to generalizing the Fourier transform from functions to distributions, the notion
of ΨDOs can also extend to S ′(Rn) by using duality arguments. Formally speaking, we
have the following computation,

(Tσu, ϕ) =

∫
(Tσu)ϕdx =

∫ [
(2π)−n/2

∫
eix·ξσ(x, ξ)û(ξ) dξ

]
ϕ(x) dx

=

∫ [
(2π)−n

∫
ei(x−y)·ξσ(x, ξ)u(y) dy dξ

]
ϕ(x) dx

=

∫
u(y)

[
(2π)−n

∫
ei(y−x)·ξσ(x, ξ)ϕ(x) dx dξ

]
dy

∼
∫
u(y)

[
(2π)−n

∫
ei(y−x)·ξ

∑
α

(x− y)α

α!
∂αy σ(y, ξ)ϕ(x) dx dξ

]
dy (Taylor’s)

∼
∫
u(y)

[
(2π)−n

∫
(−D)αξ (ei(y−x)·ξ)

∑
α

1

α!
∂αy σ(y, ξ)ϕ(x) dx dξ

]
dy

∼
∫
u(y)

[
(2π)−n

∫
ei(y−x)·ξ

∑
α

1

α!
∂αyD

α
ξ σ(y, ξ)ϕ(x) dx dξ

]
dy

=

∫
u(y)

[
(2π)−n/2

∫
eiy·ξ

∑
α

1

α!
∂αyD

α
ξ σ(y, ξ)ϕ̂(ξ) dξ

]
dy

=

∫
u(y)Tσ∗ϕ(y) dy, σ∗(y, ξ) :=

∑
α

1

α!
∂αyD

α
ξ σ(y, ξ)

= (u, Tσ∗ϕ). (2.5)

The computation (2.5) implies the existence of the adjoint of Tσ (denoted as T ∗σ ), and we
leave the rigorous proof of the existence of T ∗σ to §5.3. Now, by assuming the existence of
T ∗σ , we extend the domain of Tσ from S (Rn) to S ′(Rn) as follows.

Definition 2.12 (Pseudodifferential operators in S ′). Let σ be a symbol. For every
u ∈ S ′(Rn), we can define the pseudo-differential operator Tσ acting on u as

(Tσu, ϕ) := (u, T ∗σϕ), ∀ϕ ∈ S (Rn).

where T ∗σ is the adjoint of Tσ and the bracket (·, ·) signifies the pair of distributions with
test functions.

Lemma 2.13. Let σ be a symbol, and denote its corresponding ΨDO as Tσ. Then
Tσ(S (Rn)) ⊂ S (Rn). And also, Tσ(S ′(Rn)) ⊂ S ′(Rn).
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Sketch of the proof. Let ϕ ∈ S (Rn), we need to show xαDβ(Tσϕ) are bounded in
Rn. We can show

xαDβ(Tσϕ)(x) '
∑
α′,β′

∫
eix·ξσ̃α′,β′(x, ξ)F{xα

′
Dβ′ϕ}(ξ) dξ

where σ̃α′,β′ are also symbols of certain orders, say, m. Because ϕ ∈ S (Rn), we know that

the Fourier transform F{xα′Dβ′ϕ} ∈ S (Rn), so

|F{xα′Dβ′ϕ}(ξ)| . 〈ξ〉−M

for any positive integer M . Hence,

|xαDβ(Tσϕ)(x)| .
∑
α′,β′

∫
〈ξ〉m〈ξ〉−M dξ < +∞

when we take M to be large enough.
For the second conclusion, from (Tσu, ϕ) := (u, T ∗σϕ), ∀ϕ ∈ S (Rn) we have

|(Tσu, ϕ)| ≤ ‖u‖‖T ∗σϕ‖ . ‖u‖|ϕ|m

where m is the order of σ. Then by Lemma 1.12 we can conclude Tσu ∈ S ′(Rn). �

In conclusion, there holds

Tσ :

{
S → S ,

S ′ → S ′,
(2.6)

where S is a shorthand for S (Rn). Space S represents functions which are extremely
smooth (good), while S ′ represents “functions” which are extremely rough (bad). To
quantize the goodness and the badness, we introduce the potential spaces.

2.2.2. Sobolev spaces.

Definition 2.14 (Sobolev spaces). We denote

Hs,p(Rn) := {f ∈ S ′(Rn) ; (I −∆)s/2f ∈ Lp(Rn)} ,

and define the norm ‖f‖Hs,p := ‖(I −∆)s/2f‖Lp(Rn). Write Hs(Rn) := Hs,2(Rn).

Lemma 2.15. The normed vector space (Hs,p(Rn), ‖·‖Hs,p) is a Banach space, and
(Hs(Rn), ‖·‖Hs) is a Hilbert space.

Theorem 2.16. Let σ ∈ Sm and denote its corresponding ΨDO as Tσ. Then the
mapping Tσ : Hs(Rn)→ Hs−m(Rn) is bounded.

The proof of Theorem 2.16 is based on the L2 boundedness of ΨDOs of order 0. Formally
speaking,

‖Tσf‖Hs−m = ‖(I −∆)(s−m)/2 ◦ Tσf‖L2 . ‖(I −∆)s/2f‖L2 = ‖f‖Hs .

Theorem 2.17. For a fixed constant s ∈ R, ∀ r, t : r ≤ s ≤ t, ∀C > 0, ∀ϕ ∈ S (Rn),
we have:

‖ϕ‖2Hs ≤
1

Ct−s
‖ϕ‖2Ht + Cs−r‖ϕ‖2Hr . (2.7)
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Remark 2.2. We know that when t > s, ‖ϕ‖Hs can be controlled by ‖ϕ‖Ht :

‖ϕ‖Hs ≤ 1 · ‖ϕ‖Ht .

The key point of Theorem 2.17 is that ‖ϕ‖Hs can even be “controlled” by c · ‖ϕ‖Ht with
0 < c < 1. But we need to pay for this: being dominated only by c · ‖ϕ‖Ht is not enough.
Due to the fact that c is less than 1, certain “byproduct” should cost to compensate the
advantage, and this so-called “byproduct” is ‖ϕ‖Hr .

Proof of Theorem 2.17. When 0 < C ≤ 1, it is trivial. When C ≥ 1, we have:

‖ϕ‖2Hs = ‖F−1σ−sFϕ‖22 = ‖σ−sϕ̂‖22 =

∫
Rn
〈ξ〉2s|ϕ̂(ξ)|2 dξ

=

∫
{〈ξ〉≤

√
C}
〈ξ〉2s|ϕ̂(ξ)|2 dξ +

∫
{〈ξ〉>

√
C}
〈ξ〉2s|ϕ̂(ξ)|2 dξ

=

∫
{〈ξ〉≤

√
C}
〈ξ〉2s−2r · 〈ξ〉2r|ϕ̂(ξ)|2 dξ +

∫
{〈ξ〉−1< 1√

C
}
(〈ξ〉−1)2t−2s · 〈ξ〉2t|ϕ̂(ξ)|2 dξ

≤
∫
{〈ξ〉≤

√
C}

√
C

2s−2r
· 〈ξ〉2r|ϕ̂(ξ)|2 dξ +

∫
{〈ξ〉−1< 1√

C
}
(

1√
C

)2t−2s · 〈ξ〉2t|ϕ̂(ξ)|2 dξ

≤
√
C

2s−2r
∫
Rn
〈ξ〉2r|ϕ̂(ξ)|2 dξ + (

1√
C

)2t−2s

∫
Rn
〈ξ〉2t|ϕ̂(ξ)|2 dξ

= Cs−r‖ϕ‖2Hr + Cs−t‖ϕ‖2Ht .

This completes the proof. �

Remark 2.3. In the proof of Theorem 2.17, when ϕ is compactly supported and s = 0,
and if we replace 〈ξ〉 by |ξ| and choose r = 0 and C to be small enough and use the fact
that ∫

{|ξ|≤
√
C}
|ϕ̂(ξ)|2 dξ . Cn/2 sup

|ξ|≤
√
C

|ϕ̂(ξ)|2 . Cn/2‖ϕ‖2L1 ≤ Cn/2
√
| suppϕ|‖ϕ‖L2 ,

we can prove the Poincare’s inequality ‖ϕ‖L2 . ‖(−∆)t/2ϕ‖L2 for the set of functions with
uniformly compact support.

Noticing that 〈ξ〉 ≥ 1, we can further extend Theorem 2.17 to more generalized situation.

Theorem 2.18. For a fixed constant s ∈ R, ∀ t ≥ s and ∀ r ∈ R1, ∀ ε > 0, ∀ϕ ∈
S (Rn), there exists a constant Cr,s,t,ε such that:

‖ϕ‖2Hs ≤ ε‖ϕ‖2Ht + Cr,s,t,ε‖ϕ‖2Hr . (2.8)

As mentioned in Remark 2.2, Theorem 2.18 expresses the same information, in addition
that the “byproduct” can be ‖ϕ‖Hr with any r ∈ R1.

Proof of Theorem 2.18. We pick up some constant C > 1 first, and then we decide
its value later.

‖ϕ‖2Hs = ‖F−1σ−sFϕ‖22 = ‖σ−sϕ̂‖22 =

∫
Rn
〈ξ〉2s|ϕ̂(ξ)|2 dξ

=

∫
{1≤〈ξ〉≤

√
C}
〈ξ〉2s|ϕ̂(ξ)|2 dξ +

∫
{〈ξ〉>

√
C}
〈ξ〉2s|ϕ̂(ξ)|2 dξ

=

∫
{1≤〈ξ〉≤

√
C}
〈ξ〉2s−2r · 〈ξ〉2r|ϕ̂(ξ)|2 dξ +

∫
{〈ξ〉−1< 1√

C
}
(〈ξ〉−1)2t−2s · 〈ξ〉2t|ϕ̂(ξ)|2 dξ



2.3. KERNELS 19

≤ max{1,
√
C

2s−2r
} ·
∫
{1≤〈ξ〉≤

√
C}
〈ξ〉2r|ϕ̂(ξ)|2 dξ

+

∫
{〈ξ〉−1< 1√

C
}
(

1√
C

)2t−2s · 〈ξ〉2t|ϕ̂(ξ)|2 dξ

≤ max{1,
√
C

2s−2r
} ·
∫
Rn
〈ξ〉2r|ϕ̂(ξ)|2 dξ + (

1√
C

)2t−2s

∫
Rn
〈ξ〉2t|ϕ̂(ξ)|2 dξ

= max{1,
√
C

2s−2r
} · ‖ϕ‖2Hr + Cs−t‖ϕ‖2Ht .

Now let C = εt−s and let Cr,s,t,ε = max{1,
√
C

2s−2r}, then we completes the proof. �

2.2.3. Other phases. Beside the phase (x− y) · ξ in the expression

(Tσϕ)(x) = (2π)−n
∫
ei(x−y)·ξσ(x, y, ξ)ϕ(y) dy dξ

in Definition 2.7, it is possible to use more general functions as the phase functions and the
corresponding operators are still ΨDOs, i.e.,

Pϕ(x) = (2π)−n
∫
eiφ(x,y,ξ)σ(x, y, ξ)ϕ(y) dy dξ

will still be a ΨDO is the φ satisfies certain conditions. See [Sog17, §3.2] for details.

2.3. Kernels

The expression in Definition 2.7 can also be represented as

(Tσϕ)(x) =

∫
Rn
K(x, y)ϕ(y) dy, (2.9)

where K(x, y) is called the kernel of Tσ,

K(x, y) := (2π)−n
∫
ei(x−y)·ξσ(x, ξ) dξ,

and the integration shall be understood as an oscillatory integral (see Definition 3.7).
Differential operators such as P =

∑n
j=1 xj∂j maps S (Rn) → S (Rn), C∞c (Rn) →

C∞c (Rn), and E(Rn)→ E(Rn), and so by duality argument, we know differential operators
P maps S ′(Rn)→ S ′(Rn), D′(Rn)→ D′(Rn), and E ′(Rn)→ E ′(Rn):

P :

{
E ′(Rn)→ E ′(Rn)

D′(Rn)→ D′(Rn)

But for pseudo-differential operators Tσ, generally speaking, we only have Tσ : E ′(Rn) →
D′(Rn).

Tσ :


E ′(Rn)→ D′(Rn)

E ′(Rn) 6→ E ′(Rn)

D′(Rn) 6→ D′(Rn).

A ΨDO which maps E ′ to E ′ is called properly supported. In fact any ΨDO can be divided
into a properly supported part and a C∞-smooth part.

Lemma 2.19. Assume m ∈ R and σ ∈ Sm is a symbol, and K(x, y) is the kernel of
Tσ. Then for any ε > 0, there exists two symbols σ1 ∈ Sm and σ2 ∈ S−∞ such that
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σ = σ1 + σ2, Tσ1 is properly supported, Tσ2 is smooth, and their kernels K1,K2 has the
following properties:

suppK1 ⊂ {(x, y) ∈ R2n ; |x− y| ≤ ε}, (properly supported)

suppK2 ⊂ {(x, y) ∈ R2n ; |x− y| ≥ ε/2}. (smooth)

Idea of the proof. The proof needs Theorem 5.4.
Fix a cutoff function χ ∈ C∞c (R) such that χ(t) = 1 when |t| ≤ ε/2 and χ(t) = 0 when

|t| ≥ ε. We have

Tσϕ(x) = (2π)−n
∫
ei(x−y)·ξσ(x, ξ)ϕ(y) dy dξ = T ′ϕ(x) + T ′′ϕ(x),

where 
T ′ϕ(x) = (2π)−n

∫
ei(x−y)·ξχ(|x− y|2)σ(x, ξ)ϕ(y) dy dξ,

T ′′ϕ(x) = (2π)−n
∫
ei(x−y)·ξ(1− χ(|x− y|2))σ(x, ξ)ϕ(y) dy dξ.

(2.10)

By Theorem 5.4 we see that there exist σ1, σ2 ∈ Sm such that T ′ = Tσ1 and T ′′ = Tσ2 , so
Tσ = Tσ1 + Tσ2 = Tσ1+σ2 . By Lemma 2.11 we know σ = σ1 + σ2.

The fact σ2 ∈ S−∞ can be seen when using the asymptotics in Theorem 5.4, namely,

σ2(x, ξ) =
∑
|α|≤N

1

α!
Dα
y ∂

α
η

(
(1− χ(|x− y|2))σ(x, η)

)
|(y,η)=(x,ξ) + Sm−N−1 = Sm−N−1

holds for ∀N ∈ N, so σ2 ∈ S−∞.
From (2.10) we can see

K1(x, y) = (2π)−n
∫
ei(x−y)·ξχ(|x− y|2)σ(x, ξ) dξ,

K2(x, y) = (2π)−n
∫
ei(x−y)·ξ(1− χ(|x− y|2))σ(x, ξ) dξ.

which implies T1 is properly supported. And the requirements for the suppK1 and suppK1

can be seen from the expression above. The proof is complete. �

2.4. Pseudolocal property

We talk about singular support and pseudolocal property.

Definition 2.20 (Singular support). For a distribution u ∈ D ′, we define its singular
support to be the complement of the set

⋂
{O ⊂ Rn ; O is open and A ⊂ O} where

A = {x ∈ Rn ; u is C∞ at x}.
We denote the singular support of a distribution u ∈ D ′ as sing suppu.

It is obvious that sing suppu is as closed set and

sing suppu ⊂ suppu.

We know a differential operator doesn’t increase the support of a distribution, but this
is not true for a ΨDO. More specifically, if a distribution u is supported in Ω, then Tu
might not be supported in a domain Ω anymore. Instead, ΨDOs have another property,
called pseudolocal property, which means ΨDOs don’t increase the singular support of a
distribution.

Theorem 2.21 (Pseudolocal property). Assume T is a ΨDO, then

sing supp(Tu) ⊂ sing suppu.



EXERCISE 21

Proof. Assume x0 /∈ sing suppu. Because sing suppu is closed, we can find ε > 0 such
that u is C∞ in B(x0, ε). According to Lemma 2.19, we can divided T into T1 and T2 such
that T2 is C∞-smooth and the kernel K1 of T1 satisfies

suppK1 ⊂ {(x, y) ∈ R2n ; |x− y| ≤ ε/4}.
Hence, for ∀x ∈ B(x0, ε/4), we have K(x, y) = 0 when |y − x0| ≥ ε/2.

Fix a function χ ∈ C∞c such that χ(y) = 1 when |y − x0| ≤ ε/2 and suppχ = B(x0, ε),
then

∀x ∈ B(x0, ε/4), T1u(x) =

∫
K(x, y)u(y) dy =

∫
K(x, y)χ(y)u(y) dy = T1(χu)(x).

Note that χu ∈ C∞c ⊂ S due to the fact that u is C∞ in suppχ, so T1(χu) ∈ S . Because
T1u = T1(χu) ∈ S on B(x0, ε/4), we conclude that T1u ∈ C∞(B(x0, ε/4)). Also, T2u ∈ C∞
because T2 is C∞-smooth. In total, Tu is C∞-smooth in a small neighborhood of x0, so
x0 /∈ sing supp(Tu).

We obtain (sing suppu)c ⊂ (sing supp(Tu))c. The proof is complete. �

Exercise

Exercise 2.1. Prove S (Rn) ⊂ S−∞, namely, ∀ϕ ∈ S (Rn), ϕ(ξ) ∈ S−∞.

Exercise 2.2. Prove Lemma 2.3.

Exercise 2.3. Prove Lemma 2.13. See [Won14, Prop. 6.7] for reference.



CHAPTER 3

Oscillatory integrals

In §2.1 we encountered the notion of kernel of a ΨDO,

K(x, y) := (2π)−n
∫
ei(x−y)·ξσ(x, ξ) dξ.

which might not be integral in the Lebesgue sense (e.g. when σ(x, ξ) = 1). However, if we
look back to the original definition of a ΨDO,

(Tσϕ)(x) = (2π)−n/2
∫
Rn
eix·ξσ(x, ξ)ϕ̂(ξ) dξ,

the integral above is always well-defined in the Lebesgue sense, because ϕ̂ is rapidly decaying.
Specifically, for any m ∈ R and any σ ∈ Sm, we have

|(Tσϕ)(x)| .
∫
|σ(x, ξ)ϕ̂(ξ)|dξ .

∫
Rn
〈ξ〉m〈ξ〉−m−n−1 dξ < +∞.

The problems emerges when we expand the Fourier transform ϕ̂ (by a variable y) and
exchange the integration order of y and ξ:

(Tσϕ)(x) = (2π)−n
∫ ( ∫

ei(x−y)·ξσ(x, ξ)ϕ(y) dy
)

dξ,∫
Rn
K(x, y)ϕ(y) dy = (2π)−n

∫ ( ∫
ei(x−y)·ξσ(x, ξ) dξ

)
ϕ(y) dy.

(3.1)

According to Fubini’s theorem, this exchange is valid only when all of the integrals involved
are absolutely integrable. From time to time we will encounter integrals of the form (3.1),
but also more general than that. A rigorous framework is appealing for making the integrals
of these type always well-defined.

3.1. Oscillatory integrals - Type I

Generally speaking, for any u ∈ S (Rn) and σ ∈ Sm(Rnx ×RNξ ), one is interested in the
following integral

I(u) :=

∫
eiϕ(x,ξ)σ(x, ξ)u(x) dx dξ (3.2)

where ϕ is a phase function defined as follows.

Definition 3.1 (Phase function). Function ϕ is called a phase function (of order µ) if
it satisfies

(1) ϕ ∈ C∞(Rnx × (RNξ \{0});R) is real-valued;

(2) ϕ is homogeneous w.r.t. ξ of order µ > 0, i.e. ϕ(x, tξ) = tµϕ(x, ξ);
(3) |∇(x,ξ)ϕ(x, ξ)| 6= 0 for ∀(x, ξ) ∈ Rnx × (RNξ \{0}).

There are different ways to define the notion of phase functions, see [Hör03, §7.8], and
we don’t pursue diversity here. Note that n might not equal N , and most of the results
in §2.1 holds also for the case n 6= N . Here we consider phases of order µ, instead of just

22
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order 1, because in §5 and §7 we do encounter phases of order 2. The condition µ > 0 is
indispensable.

In contrast with (3.1), in (3.2) it is not sure that integrating first w.r.t x (or ξ) can
guarantee it’s integrable. Instead, we study

lim
ε→0+

Iε(u) := lim
ε→0+

∫
eiϕ(x,ξ)σ(x, ξ)χ(εξ)u(x) dx dξ, (3.3)

where χ is a function in C∞c (Rn) with χ(0) = 1. We show that the limit (3.3) exists and its
value is independent of the choice of χ.

Theorem 3.2. Assume m ∈ R, σ ∈ Sm(Rnx × RNξ ) and ϕ is a phase function of order

µ. Fix a function χ ∈ C∞c (Rn) with χ(0) = 1. Assume either u ∈ C∞c (Rn), or u ∈ S (Rn)
and ∂αxϕ(x, ξ) is tempered w.r.t. x for any α. Then the limit (3.3) exists and its value is
independent of the choice of χ, and it equals to∫

eiϕ(x,ξ)LT
(
σ(x, ξ)u(x)

)
dx dξ,

when integer T > (m+N)/µ where L is given in Lemma 3.4.

The proof Theorem 3.2, we fist do some preparation.

Lemma 3.3. Assume χ ∈ C∞c (Rn) and let ε ∈ R. There exists a constant C independent
of ε such that

|∂αξ
(
χ(εξ)

)
| ≤ C〈ξ〉−|α|.

Proof. Because χ ∈ C∞c (Rn), there exists a fixed constant C such that χ(εξ) ≡ 0 when
|ε〈ξ〉| ≥ C. When |ε〈ξ〉| ≥ C, χ(εξ) = 0 so ∂αξ

(
χ(εξ)

)
= 0; when |ε〈ξ〉| ≤ C, we have

|∂αξ
(
χ(εξ)

)
| = |ε||α||∂αξ χ(εξ)| ≤ (C〈ξ〉)−|α| sup

Rn
|∂αξ χ| ' C〈ξ〉−|α|.

We arrive at the conclusion. �

Lemma 3.4. Assume ϕ is a phase function ϕ of order µ, and ∂αxϕ(x, ξ) is tempered
w.r.t. x for any α. Then there exists an first order linear differential operator

L = aj(x, ξ)∂xj + bj(x, ξ)∂ξj + c(x, ξ)

such that tL(eiϕ(x,ξ)) = eiϕ(x,ξ), and for any fixed x0, aj(x0, ·) ∈ S−µ, bj(x0, ·) ∈ S1−µ,
c(x0, ·) ∈ S−µ, and aj , bj , c are tempered functions of x variable.

Here 〈tLf, g〉 := 〈f, Lg〉, where the integral is w.r.t. (x, ξ), and f, g ∈ C∞0 . tL is call the
transpose of L, e.g. t(∇ξ) = −∇ξ.

Proof of Lemma 3.4. We write ∇xϕ = ϕx and ∇ξϕ = ϕξ for short. Fix a χ ∈
C∞c (RN ) with χ ≡ 1 in a neighborhood of 0. Construct

M := (1− χ(ξ))
ϕx ·Dx + 〈ξ〉2ϕξ ·Dξ

|ϕx|2 + 〈ξ〉2|ϕξ|2
+ χ(ξ).

We mention several facts about M :

• First, M is well-defined. Note that the denominator |ϕx|2 + 〈ξ〉|ϕξ|2 ≥ |ϕx|2 +

|ϕξ|2 6= 0 when (x, ξ) ∈ Rnx × (RNξ \{0}), and the point ξ = 0 has been cutoff by
1− χ, so M is always well-defined;
• Second, away from ξ = 0, ϕx(x0, ·) ∈ Sµ, ϕξ(x0, ·) ∈ Sµ−1, the denominator(x0, ·) ∈
S2µ;
• Third, Meiϕ(x,ξ) = (1− χ)eiϕ(x,ξ) + χeiϕ(x,ξ) = eiϕ(x,ξ).
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The transpose of M is the desired operator. Indeed, it can be checked that, when x is
fixed,

tM = (1− χ)S−µ∂x + (1− χ)S1−µ∂ξ + (1− χ)S−µ + χ(ξ). (3.4)

The proof is complete. �

Remark 3.1. Here S−µ∂x is a shorthand of a ∈ C∞ such that aj∂xj for some a(x0, ·) ∈
S−µ. Readers should note that (3.4) is somehow misleading because the coefficients might
not be bounded w.r.t. x, e.g. tM = x1∂x1 . However, they must be tempered, and these
tempered growth will be balanced by the rapid decay of u, The notations in (3.4) wouldn’t
hurt.

Proof of Theorem 3.2. Choose L according to Lemma 3.4, then

Iε(u) =

∫
(tL)T (eiϕ(x,ξ))σ(x, ξ)χ(εξ)u(x) dx dξ

=

∫
eiϕ(x,ξ)LT

(
σ(x, ξ)χ(εξ)u(x)

)
dx dξ. (3.5)

Readers should note that the transpose of L is realized by the classical integration by parts
(nothing fancy here), and it is the presence of χ(εξ) that cancels the boundary terms and
makes the integration by parts applicable.

The conditions “aj ∈ S−µ, bj ∈ S1−µ, c ∈ S−µ” in Lemma 3.4 give us

LT
(
σ(x, ξ)χ(εξ)u(x)

)
=
(
(aj(x, ξ)∂xj + bj(x, ξ)∂ξj + c(x, ξ)

)T (
σ(x, ξ)χ(εξ)u(x)

)
=

∑
|α+β|≤T

S−µ|α|+(1−µ)|β|−µ(T−|α|−|β|)∂αx ∂
β
ξ

(
σ(x, ξ)χ(εξ)u(x)

)
=

∑
|α+β|≤T

S|β|−µT∂αx ∂
β
ξ

(
σ(x, ξ)χ(εξ)u(x)

)
=

∑
|α+β|≤T

∑
β′+β′′=β

Cβ′,β′′S
|β|−µT∂αx

(
∂β
′

ξ σ(x, ξ)∂β
′′

ξ [χ(εξ)]u(x)
)

=
∑

|α+β|≤T

∑
β′+β′′=β

CS|β|−µT∂αx
(
∂β
′

ξ σ(x, ξ)∂β
′′

ξ [χ(εξ)]u(x)
)

=
∑

|α+β|≤T

∑
β′+β′′=β

∑
α′+α′′=α

CS|β|−µT∂α
′

x ∂
β′

ξ σ(x, ξ)∂β
′′

ξ [χ(εξ)]∂α
′′

x u(x).

The term ∂β
′′

ξ [χ(εξ)] is the only term that depends on ε. Hence, by Lemma 3.3 we can have

|LT
(
σ(x, ξ)χ(εξ)u(x)

)
|

≤
∑

|α+β|≤T

∑
β′+β′′=β

∑
α′+α′′=α

C〈ξ〉|β|−µTC〈ξ〉m−|β′|C〈ξ〉−|β′′|S (Rnx)

≤ C〈ξ〉m−µTS (Rnx),

where the constant C is independent of ε. Then T is chosen to be larger than (m+N)/µ,
the integrand in (3.5) is bounded by a absolutely integral function. Therefore, according
to LDCT, the limit limε→0+ Iε(u) exists. Readers may think where we used the condition
µ > 0.
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We also show that the limit is independent of χ. Fix a T > (m + N)/µ, then by (3.5)
we have

lim
ε→0+

Iε(u) = lim
ε→0+

∫
eiϕ(x,ξ)LT

(
σ(x, ξ)χ(εξ)u(x)

)
dx dξ

=

∫
eiϕ(x,ξ) lim

ε→0+
LT
(
σ(x, ξ)χ(εξ)u(x)

)
dx dξ (thanks to LDCT)

=

∫
eiϕ(x,ξ)LT

(
σ(x, ξ)u(x)

)
dx dξ, (3.6)

which implies limε→0+ Iε(u) is independent of χ. The proof is complete. �

Readers may think about if the framework can be generalized to symbols in Smρ,δ.
Now let’s summarize the definition of oscillatory integrals.

Definition 3.5 (Oscillatory integral). For any m ∈ R, any σ ∈ Sm(Rnx × RNξ ), and

any phase function ϕ of order µ, and either u ∈ C∞c (Rn), or u ∈ S (Rn) and ∂αxϕ(x, ξ) is
tempered w.r.t. x for any α, the integral

I(u) =

∫
eiϕ(x,ξ)σ(x, ξ)u(x) dx dξ

is defined as

I(u) := lim
ε→0+

∫
eiϕ(x,ξ)σ(x, ξ)χ(εξ)u(x) dx dξ, (3.7)

where the result is independent of χ, as long as χ ∈ C∞c and χ(0) = 1. The limit equals

I(u) =

∫
eiϕ(x,ξ)LT

(
σ(x, ξ)u(x)

)
dx dξ

when integer T > (m+N)/µ, where L is given in Lemma 3.4.

In many cases we will meet oscillatory integrals involving parameters.

Lemma 3.6. For any σ ∈ Sm(Rn1
x × Rn2

y × RNξ ), and any phase function ϕ of order

µ, and for either u ∈ C∞c (Rn1
x × Rn2

y ), or u ∈ S (Rn1
x × Rn2

y ) and ∂α(x,y)ϕ(x, ξ) is tempered

w.r.t. (x, y) for any α, the integral

I(u)(y) :=

∫
eiϕ(x,y,ξ)σ(x, y, ξ)u(x, y) dx dξ (3.8)

is a well-defined oscillatory integral, and I : S (Rn1) → S (Rn2) bounded. Moreover, we
have

∂

∂y

(
I(u)(y)

)
=

∫
∂

∂y

(
eiϕ(x,y,ξ)σ(x, y, ξ)u(x, y)

)
dx dξ,∫

I(u)(y) dy =

∫
eiϕ(x,y,ξ)σ(x, y, ξ)u(x, y) dx dy dξ.

We omit the proof. The take-home message of Lemma 3.6 is that oscillatory integrals
can have parameters, and there are much freedom to put operations w.r.t. y inside the
integration I(u)(y).

Now we go back to ΨDOs and its kernel. We have intuitively claimed that the kernel
of Tσ is of the form

K(x, y) =

∫
ei(x−y)·ξσ(x, ξ) dξ.
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Note that this object has variables (x, y), so a proper candidate of test functions should be
w(x, y) ∈ S . We choose w(x, y) = u(y)v(x) where u, v ∈ S , then formally we should have

〈K, v ⊗ u〉 '
∫
ei(x−y)·ξσ(x, ξ)u(y)v(x) dx dy dξ ' 〈Tσu, v〉.

The integral above is exactly an example of Lemma 3.6, so it is a well-defined oscillatory
integral. Now the kernel of a ΨDO can be defined.

Definition 3.7 (Kernel). Assume m ∈ R and σ ∈ Sm, and Tσ is the corresponding
ΨDO. The kernel of Tσ is defined as a map:

Kσ : w ∈ S (R2n) 7→ 〈Kσ, w〉 := (2π)−n
∫
ei(x−y)·ξσ(x, ξ)w(x, y) dx dy dξ ∈ C.

When x 6= y, we write Kσ(x, y) as

Kσ(x, y) = (2π)−n
∫
ei(x−y)·ξσ(x, ξ) dξ. (3.9)

The well-definedness of Definition 3.7 is guaranteed by Lemma 3.6.

Remark 3.2. From (3.9), we know that when m < −N , Kσ is a well-defined bounded
function for any (x, y) because

|Kσ| .
∫
|σ(x, ξ)|dξ .

∫
〈ξ〉m dξ ≤ C < +∞.

This implies when the order of σ is small enough, there should hold some type of bound-
edness for Tσ, and we will cover this in §6. However when m ≥ −N , only when x 6= y the
kernel Kσ can be expressed as (3.9).

Lemma 3.8. Under the assumption of Definition 3.7, we have

〈Kσ, u(y)v(x)〉 = 〈Tσu, v〉.
We omit the proof.

Lemma 3.9. Under the assumption of Definition 3.7, when x 6= y, Kσ is C∞ smooth
Moreover, for T large enough, we have

|Kσ(x, y)| ≤ CT |x− y|−T , |x− y| ≥ 1.

Proof. For any fixed point (x, y) with x 6= y, we show that Kσ is C∞ at this point.
Fix a function χ ∈ C∞ satisfying χ ≡ 0 in a small neighborhood U of the diagonal {x = y}
and χ ≡ 1 in the interior of the complement of U . We can shrink U such that for any x 6= y,
χ(x, y) = 1. For any w ∈ S , we have

〈∂αx (χKσ), w〉 '
∫
ei(x−y)·ξξασ(x, ξ)w(x, y) dx dy dξ.

Apply the operator L to ei(x−y)·ξ and integrate by parts, we obtain

〈∂αxχKσ, w〉 = 〈(2π)−n
∫
ei(x−y)·ξ(−(x− y) ·Dξ

|x− y|2
)T (

ξασ(x, ξ)
)

dξ, wχ〉,

which implies

∂αx (χKσ)(x, y) '
∫
ei(x−y)·ξ(−(x− y) ·Dξ

|x− y|2
)T (

ξασ(x, ξ)
)

dξ.

It can be checked that when T is large enough, the integral above will be absolutely inte-
grable, and is of the order |x−y|−T for T large enough. Therefore, Kσ ∈ C∞(R2n\{x = y}),
and K satisfies the desired decay. �



3.2. OSCILLATORY INTEGRALS - TYPE II 27

By Lemma 3.9, we see that K(x, y) behave nicely when off the diagonal, thanks to the
notion of oscillatory integrals. However, on the diagonal, K(x, y) might still be ill-defined.
See Example 3.10.

Example 3.10. The kernel corresponding to the identity operator (symbol = 1) is the
distribution δ(x− y). This is because

〈K, v ⊗ u〉 = 〈T1u, v〉 = 〈u, v〉 =

∫
u(x)v(x) dx

=

∫
δ(x− y)u(y)v(x) dx dy

= 〈δ(x− y), v ⊗ u〉.
which gives K(x, y) = δ(x− y).

Example 3.11. The kernel corresponding to D1 (symbol = ξ1) is D1δ(x − y). This is
because

〈K, v ⊗ u〉 = 〈D1u, v〉 =

∫
D1u(x)v(x) dx =

∫
δ(x− y)D1u(y)v(x) dx dy

= −
∫
Dy1

(
δ(x− y)

)
u(y)v(x) dx dy =

∫
D1δ(x− y)u(y)v(x) dx dy

= 〈D1δ(x− y), v ⊗ u〉.
which gives K(x, y) = D1δ(x − y). Besides, readers may also have tried another way to
compute the kernel and get a zero result: when x 6= y

K(x, y) = (2π)−n
∫
ei(x−y)·ξξ1 dξ = (2π)−n

∫ ((x− y) ·Dξ

|x− y|2
)2(

ei(x−y)·ξ)ξ1 dξ

= (2π)−n
∫
ei(x−y)·ξ(−(x− y) ·Dξ

|x− y|2
)2

(ξ1) dξ = 0.

This result is technically correct (because D1δ(x−y) = 0 when x 6= y), but is not complete:
it cannot speak about the behavior of K on the diagonal. This example told us, none of the
methods is the best one to get most accurate expression for a kernel, sometimes we need to
do complicated and delicate computations.

3.2. Oscillatory integrals - Type II

We know the Fourier transform of a constant function is the δ function and so the
inverse Fourier transform of the δ function should be the constant, namely,∫

ei(x−y)·ξ dx dξ ' 1. (3.10)

This integral can be regarded as the I(u) defined in Lemma 3.6 where the symbol and the
u are both constant 1. However, this is not covered by Lemma 3.6 because 1 /∈ S . The
map I in Lemma 3.6 is defined on S . Now by using duality arguments we shall generalize
it from S to S+∞.

Let σ ∈ Sm and u ∈ S , so Tσu ∈ S . Let f ∈ S+∞, then f is a smooth tempered
function, so 〈Tσu, f〉 is meaningful and

〈Tσu, f〉 = lim
ε→0+

〈Tσu, χ(ε·)f〉

holds for any χ ∈ C∞c . Expanding the integral, we have

〈Tσu, f〉 = lim
ε→0+

∫
ei(x−y)·ξσ(x, ξ)u(y)f(x)χ(εx) dx dy dξ
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= lim
ε→0+

∫
ei(x−y)·ξσ(x, ξ)χ(εξ)u(y)f(x)χ(εx) dx dy dξ

= lim
ε→0+

∫
u(y)

( ∫
ei(x−y)·ξσ(x, ξ)f(x)χ(εx)χ(εξ) dx dξ

)
dy.

This inspired us to define (3.10) as

lim
ε→0+

∫
ei(x−y)·ξχ(εx)χ(εξ) dx dξ.

More generally, we can generalize Definition 3.5 as follows.

Definition 3.12 (Oscillatory integral). For any m ∈ R and ρ > 0, any σ ∈ Smρ (RN ),

and any phase function ϕ ∈ C∞(RN\{0}) of order µ (real-valued, ϕ(θ) = tµϕ(θ), and
∇θϕ(θ) 6= 0 when θ 6= 0) satisfying

ρ+ µ > 1, (3.11)

the integral

I =

∫
eiϕ(θ)σ(θ) dθ

is defined as

I := lim
ε→0+

∫
eiϕ(θ)σ(θ)χ(εθ) dθ, (3.12)

where the result is independent of χ, as long as χ ∈ C∞c and χ(0) = 1. The limit equals

I =

∫
eiϕ(θ)LT

(
σ(θ)

)
dθ (3.13)

when T > (m+N)/(ρ+ µ− 1), where L is given in Lemma 3.13 below.

Remark 3.3. The space Smρ (RN ) is defined as

Smρ (RN ) := {ϕ ∈ C∞(RN ) ; |∂αϕ(θ)| . 〈θ〉m−ρ|α|}.
See [AG07, §I.8.1] for more details. Also, the formula (3.9) in the definition of the kernel
is meaningful now.

Lemma 3.13. Under the condition in Definition 3.12, there exists an first order linear
differential operator

L = bj(θ)∂θj + c(θ)

such that tL(eiϕ(θ)) = eiϕ(θ), 0 /∈ supp bj, and bj ∈ S1−µ, c ∈ S−µ, and in a small neighbor-
hood of θ = 0 there holds b ≡ 0 and c ≡ 1.

Proof. We write ∇θϕ = ϕθ for short. Fix a χ ∈ C∞c (Rn) with χ ≡ 1 in a neighborhood
of 0. Construct

M := (1− χ(θ))
ϕθ ·Dθ

|ϕθ|2
+ χ(θ).

We mention several facts about M :

• First, M is well-defined. Note that the denominator |ϕθ|2 6= 0 when θ ∈ RN\{0},
and the point θ = 0 has been cutoff by 1− χ, so M is always well-defined;
• Second, away from θ = 0, ϕθ ∈ Sµ−1;
• Third, Meiϕ(θ) = (1− χ)eiϕ(θ) + χeiϕ(θ) = eiϕ(θ).

The transpose of M is the desired operator. Indeed, it can be checked that, when x is
fixed,

tM = (1− χ)S1−µ∂θ + (1− χ)S−µ + χ(θ).

The proof is complete. �
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Readers may compare Lemma 3.13 with Lemma 3.4.

Lemma 3.14. Assume L is chosen as in Lemma 3.13, and σ ∈ Smρ (RN ), then

|LT
(
σ(θ)

)
| . 〈θ〉m−(ρ+µ−1)T .

The proof is left as an exercise. Combining Lemmas 3.13 and 3.14, we obtain a result
similar to Theorem 3.2.

Theorem 3.15. Assume m ∈ R and ρ > 0, σ ∈ Smρ (RN ) and ϕ ∈ C∞(RN\{0}) is a
phase function of order µ. Fix a function χ ∈ C∞c (Rn) with χ(0) = 1. Then the limit (3.12)
exists and its value is independent of the choice of χ, and it equals to∫

eiϕ(θ)LT
(
σ(θ)

)
dθ,

when T > (m+N)/(ρ+ µ− 1) where T is given in Lemma 3.13.

The proof is similar to that of Theorem 3.2. The generalized definition of the oscillatory
integral can handle more cases. One of the examples is as follows.

Lemma 3.16. The following equality holds in oscillatory sense,∫
R2n

e±ix·ξ dx dξ = (2π)n.

Proof. We shall regard (x, ξ) as the θ in Definition 3.12, then this phase function x · ξ
is of order 2. One can also check that ∇(x,ξ)(x · ξ) 6= 0 when (x, ξ) 6= 0. We choose the
cutoff function as χ(εx)χ(εξ) where χ ∈ C∞c with χ(0) = 1, then∫

eix·ξ dx dξ:= lim
ε→0+

∫
eix·ξχ(εx)χ(εξ) dx dξ = lim

ε→0+

∫
(

∫
eix·ξχ(x) dx) · χ(ε2ξ) dξ

= (2π)n/2 lim
ε→0+

∫
χ̂(−ξ)χ(ε2ξ) dξ = (2π)n/2

∫
χ̂(−ξ) dξ (LDCT)

= (2π)nχ(0) = (2π)n.

The case for e−ix·ξ is similar. Note that all of the integrals above are usual integral besides
the first one on the LHS. �

The following result will be useful.

Lemma 3.17. The following equality holds in oscillatory sense,∫
R2n

e±ix·ξxαξβ dx dξ = (±i)|α|(2π)nα!δαβ.

Proof. We have∫
e±ix·ξxαξβ dx dξ =

∫
(±Dξ)

α
(
e±ix·ξ

)
ξβ dx dξ

=

∫
e±ix·ξ(∓Dξ)

α
(
ξβ
)

dx dξ = (±i)|α|
∫
e±ix·ξ∂αξ (ξβ) dx dξ.

It can be check that ∂αξ (ξβ) = β!/(β − α)! ξβ−α when α ≤ β, and = 0 otherwise. Hence,
when α ≤ β we have∫

e±ix·ξxαξβ dx dξ = (±i)|α|β!/(β − α)!

∫
e±ix·ξξβ−α dx dξ. (3.14)

When α 6= β, we can continue∫
e±ix·ξξβ−α dx dξ '

∫
Dβ−α
x

(
e±ix·ξ

)
dx dξ = 0 '

∫
e±ix·ξDβ−α

x

(
1
)

dx dξ = 0.
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Therefore, when α 6= β, we have ∫
R2n

e±ix·ξxαξβ dx dξ = 0. (3.15)

When α = β, by Lemma 3.16 we can continue (3.14) as follows,∫
R2n

e±ix·ξxαξβ dx dξ = (±i)|α|α!

∫
e±ix·ξ dx dξ = (±i)|α|α!(2π)n.

The proof is complete. �

Remark 3.4. The space Smρ (RN ) is defined as

Smρ (RN ) := {ϕ ∈ C∞(RN ) ; |∂αϕ(θ)| . 〈θ〉m−ρ|α|}.
See [AG07, §I.8.1] for more details. Also, the formula (3.9) in the definition of the kernel
is meaningful now.

We can generalize Lemma 3.16

Lemma 3.18. Assume m ∈ R and f ∈ Smρ (Rn) (see Remark 3.3) with ρ + 2 > 1. The
following equality holds in oscillatory sense,∫

R2n

e±ix·ξf(x) dx dξ = (2π)nf(0).

Remark 3.5. Lemma 3.18 indicates the the “inverse Fourier transform” is indeed the
inverse of “Fourier transform”.

Proof. We only show the case +ix · ξ. The condition on f guarantees the integral is
well-defined, see Definition 3.12. By Taylor’s expansion we have

f(x) = f(0) +
n∑
j=1

xjgj(x), where gj(x) :=

∫ 1

0
∂xjf(tx), dt.

so ∫
eix·ξf(x) dx dξ =

∫
eix·ξ[f(0) +

n∑
j=1

xjgj(x)] dx dξ

= f(0)

∫
eix·ξ dx dξ +

n∑
j=1

∫
Dξj (e

ix·ξ)gj(x) dx dξ

= (2π)nf(0)−
n∑
j=1

∫
eix·ξDξj

(
gj(x)

)
dx dξ

= (2π)nf(0).

The proof is complete. �

Exercise

Exercise 3.1. Check that the tM given in (3.4) satisfies (3.4). Hint: utilize the second
fact about M to facilitate the derivation.

Exercise 3.2. Prove Lemma 3.14.



CHAPTER 4

Stationary phase lemmas

The stationary phase lemmas is a useful tools for computing certain asymptotics. Some
useful references are [DS99, §5], [Esk11, §19.3], [Hör03, §7.7], [Zwo12, §3].

From time to time in the lecture we will encounter oscillatory integrals of the form

I(λ) =

∫
eiλϕ(x)a(x) dx (4.1)

where ϕ is a phase function of some order and a is a symbol (|∂βa(ξ)| . 〈ξ〉m−|β|). In §3 we
have introduced some schemes to make I(λ) well-defined. Now we focus on the asymptotics
of I(λ) with respect to λ→ +∞ where ϕ satisfies certain conditions.

When ϕ is linear, i.e. ϕ(x) = p ·x for certain fixed vector p 6= 0, there is no critical point
of ϕ (|∇ϕ| = |p| 6= 0). In this case we call ϕ non-stationary. For the non-stationary case,
the asymptotics of I is straightforward:

I(λ) =

∫
eiλp·xa(x) dx =

∫ (p ·Dx

λ|p|2
)N

(eiλp·x) a(x) dx

= λ−N
∫
eiλp·x

(−p ·Dx

|p|2
)N

(a(x)) dx . |p|−Nλ−N
∫ ∑
|β|=N

Cβ∂
βa(x) dx

. |p|−Nλ−N
∫
〈x〉m−N dx . λ−N ,

provided N is large enough. This means that
∫
eiλp·xa(x) dx is of rapid decay w.r.t. λ.

The gradient of ϕ has been put in the denominator in the derivation above, so the
method will not be applicable when the phase function contains critical points. In this case
we call the phase stationary. In this chapter we devote ourselves into the stationary case.

4.1. A simple case

To help readers understand the method of stationary phase, we start with a simple case
where the phase is stationary. To that end, we need to do some preparations.

4.1.1. Preliminaries. We need the Taylor’s expansion. Suppose f ∈ CN+1(Rn;C),
then we have that

f(x) =
∑
|δ|≤N

1

δ!

(
∂δf

)
(x0) · (x− x0)δ

+ (N + 1)
∑

|δ|=N+1

(x− x0)δ

δ!

∫ 1

0
(1− t)N

(
∂δf

)
(x0 + t(x− x0)) dt. (4.2)

The proof of (4.2) can be found in most of the calculus textbook and we omit it here.
Secondly, for a measurable function u in Rn, as long as ∂αu ∈ L1(Rn) for |α| ≤ n + 1,

then û exists and there exists a constant C depending only on the dimension n such that

‖û‖L1(Rn) ≤ C
∑
|α|≤n+1

‖∂αu‖L1(Rn). (4.3)

31
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Proof. We have∫
|û(ξ)|dξ =

∫
〈ξ〉−n−1|〈ξ〉n+1û(ξ)| dξ ≤ C sup

Rn
|〈ξ〉n+1û(ξ)|

≤ C
∑
|α|≤n+1

Cα sup
Rn
|ξαû(ξ)| ≤ Cn

∑
|α|≤n+1

sup
Rn
|F{∂αu}(ξ)|

≤ Cn
∑
|α|≤n+1

‖∂αu‖L1(Rn).

We arrive at the conclusion. �

We also need the following transformation. For a fixed non-degenerate, symmetric,
real-valued square matrix Q, we have

F{e±i 〈Q·,·〉/2}(ξ) =
e±i

π
4

sgnQ

|detQ|1/2
e∓i〈Q

−1ξ,ξ〉/2. (4.4)

Here the non-degeneracy condition of Q means the determinant detQ 6= 0.

Proof. We have

F{e±i |·|2/2}(ξ) = (2π)−n/2
∫
Rn
e−ix·ξe±i |x|

2/2 dx = (2π)−n/2e∓i|ξ|
2/2

∫
Rn
e±i|x∓ξ|

2/2 dx

= π−n/2e∓i|ξ|
2/2

∫
Rn
e±i|x|

2
dx.

By standard Cauchy’s integral theorem we can have∫ +∞

−∞
e±ix

2
dx =

√
πe±iπ/4,

so we can continue,

F{e±i |·|2/2}(ξ) = π−n/2e∓i|ξ|
2/2(
√
πe±i

π
4 )n = e±i

π
4
ne∓i|ξ|

2/2. (4.5)

We left the computation from (4.5) to (4.4) as an exercise. �

4.1.2. A simple case. Now we study the quadratic case in R1.

Lemma 4.1. Assume a ∈ C∞c (R) with a(0) 6= 0. Fix an arbitrary integer N ∈ N. Then
for the integral I(λ):

I(λ) =

∫
R
eiλx

2/2a(x) dx,

there holds

I(λ) =

(
2π

λ

)1/2

ei
π
4

∑
0≤j≤N

λ−j

j!

(
i

2

)j
a(2j)(0) +O(λ−

1
2
−N−1

∑
j≤2N+4

sup |a(j)|), (4.6)

where a(j) signifies dja
dxj

.

Proof. By the Plancherel theorem (which claims (f, g) = (f̂ , ĝ)) we have

I(λ) =

∫
e−iλx2/2a(x) dx =

∫
(λ)−1/2e−

iπ
4 e

i
2λ
ξ2 â(ξ) dξ

= λ−1/2e
iπ
4

∫
e−

iξ2

2
hâ(ξ) dξ, (h := λ−1).
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Using (4.2) to expand I(λ) w.r.t. h at h = 0, we obtain∫
e−

iξ2

2
hâ(ξ) dξ =

N∑
j=0

∫
hj(− iξ

2

2
)j/j! â(ξ) dξ

+ |h
N+1

N !

∫ 1

0

∫
(1− t)N (− iξ

2

2
)N+1e−

iξ2

2
thâ(ξ) dξ dt|

=

N∑
j=0

hj
( i2)j

j!

∫
F{a(2j)}(ξ) dξ +O(hN+1

∫
|ξ2N+2â(ξ)|dξ)

=
N∑
j=0

(2π)1/2( i2)jhj

j!
a(2j)(0) +O(hN+1‖F{a(2N+2)}‖L1(R)) (4.7)

=

N∑
j=0

(2π)1/2( i2)jhj

j!
a(2j)(0) +O(hN+1

∑
j≤2N+4

‖a(j)‖L1(R)).

Note that we used (4.3). Combining the computations and changing h back to λ−1, we
arrive at (4.6). The proof is complete. �

From this very short proof we extract the main steps:

(1) use Plancherel theorem to turn λ into λ−1 in the exponent;
(2) expand the integral w.r.t. h := λ−1 at h = 0 with integral-type remainder;
(3) estimate the remainder using (4.3).

4.2. Lemma Statements

We are ready to state the following main results in this chapter.

Theorem 4.2. Let n ∈ N+ be the dimension. We consider the oscillatory integral I(λ):

I(λ) =

∫
Rn
eiλ〈Q(x−x0),x−x0〉/2a(x;λ) dx,

where 〈Qx, y〉 signifies (Qx)T y as matrix multiplication. Fix two arbitrary integers M ,
N ∈ N, and we assume

• Q is a non-degenerate, symmetric, real-valued matrix;
• for each λ, a(·;λ) ∈ Cn+2N+3(Rn;C);
• for each λ, a(·;λ) ∈ CM (Rn;C), and ∀α : |α| ≤ M , there exists λ-dependent

constants CM,α(λ) > 0 such that ∀x ∈ Rn there holds

|∂αx a(x− x0;λ)| < CM,α(λ)〈x〉2M−n−1−|α|.

Then the integral I(λ) is well-defined in the oscillatory integral sense, and we have

I(λ) =

(
2π

λ

)n/2 ei
π
4

sgnQ

|detQ|1/2
∑

0≤j≤N

λ−j

j!

(
〈Q−1D,D〉

2i

)j (
a(x;λ)

)
|x=x0

+O
(
λ−

n
2
−N−1 ×

∑
|α|≤n+2N+3

sup
B(x0,1)

|∂αa(·;λ)|
)

+O
(
λ−M ×

∑
|α|≤M

sup
Rn

|∂αa(x− x0;λ)|
〈x〉2M−n−1−|α|

)
, λ→ +∞,

(4.8)
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where B(x0, 1) stands for the ball centered at x0 with radius 1, and sgnQ stands for the
difference between the number of positive eigenvalues and the number of negative eigenvalues
of the matrix Q.

Remark 4.1. In contrast to many other versions of the stationary phase lemma, here
we don’t require a to be compactly supported. Instead, some other boundedness conditions
are imposed, which makes the oscillatory integral well-defined.

Remark 4.2. Eq. (4.8) is not an asymptotics w.r.t. j, but is rather w.r.t. λ. To get
enough terms w.r.t. j, one could choose M be large enough first, and then check if a satisfies
the requirements of the theorem.

Remark 4.3. The function a is allowed to be dependent on λ, hence the expression (4.8)
is an asymptotic expansion only when ∂αx a(x;λ) doesn’t increase significantly as λ→ +∞.

Remark 4.4. The integers M and N in Theorem 4.2 shall be chosen properly to serve
for one’s own purposes. For example, if one cares more about the decaying behavior w.r.t. λ,
then the M can be set to dn/2e+N + 1. However, if one is dealing with these functions a
which doesn’t have good decaying behavior at the infinity, then one could set M to be large
enough such that 〈x〉2M−n−1−|α| can dominate ∂αa, with the cost that we should demand
of more smoothness of a(x).

Remark 4.5. The unit ball B(x0, 1) involved in the term supB(x0,1) |∂αa| can be changed
to other bounded domains containing x0. But one should be careful that when the chosen
domain has a very smaller radius, the underlying coefficients of the O(·) term will be larger
accordingly.

If chosen M = n+ 2N + 3, Theorem 4.2 will be simplified as follows.

Proposition 4.3. Let n ∈ N+ be the dimension. We consider the oscillatory integral
I(λ):

I(λ) =

∫
Rn
eiλ〈Q(x−x0),x−x0〉/2a(x;λ) dx,

where 〈Qx, y〉 signifies (Qx)T y as matrix multiplication. Fix an integer N ∈ N, and we
assume

• Q is a non-degenerate, symmetric, real-valued matrix;
• for each λ, a(·;λ) ∈ Cn+2N+3(Rn;C), and ∀α : |α| ≤ n + 2N + 3, there exists
λ-dependent constants CN,n,α(λ) > 0 such that ∀x ∈ Rn there holds

|∂αx a(x− x0;λ)| < CN,n,α(λ)〈x〉2N+2. (4.9)

Then I(λ) is well-defined in the oscillatory integral sense, and as λ→ +∞ we have

I(λ) =

(
2π

λ

)n/2 ei
π
4

sgnQ

|detQ|1/2
∑

0≤j≤N

λ−j

j!

(
〈Q−1D,D〉

2i

)j (
a(x;λ)

)
|x=x0

+O
(
λ−

n
2
−N−1

∑
|α|≤n+2N+3

sup
x∈Rn

|∂αa(x− x0;λ)|
〈x〉n+4N+5−|α|

)
. (4.10)

Proposition 4.3 can be extended to a more general case where the phase function is not
quadratic.

Theorem 4.4 (Stationary phase lemma [Ma20a]). We consider the oscillatory integral
I(λ):

I(λ) =

∫
Rn
eiλϕ(x)a(x) dx.
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For an arbitrary integer N ∈ N, assume

• a ∈ Cn+2N+3(Rn;C) with
∑
|α|≤n+2N+3 supRn |∂αa| < +∞;

• ϕ ∈ Cn+2N+6(Rn;R) with
∑
|α|≤n+2N+6 supRn |∂αϕ| < +∞;

• x0 is the only critical point of ϕ(x) on supp a(x), i.e., ϕ(x0) = ∇ϕ(x0) = 0,
ϕx(x) 6= 0 for x 6= x0;

• the Hessian ϕxx(x0) := [ ∂2ϕ
∂xj∂xk

(x0)]nj,k=1 satisfies detϕxx(x0) 6= 0.

Then I(λ) is well-defined in the oscillatory integral sense, and as λ→ +∞ we have

I(λ) =

(
2π

λ

)n/2 eiλϕ(x0)+iπ
4

sgnϕxx(x0)

|detϕxx(x0)|1/2
(
a(x0) +

N∑
j=1

aj(x0)λ−j
)

+O
(
λ−

n
2
−N−1 ×

∑
|α|≤n+2N+3

sup
Rn
|∂αa| ×

∑
|α|≤n+2N+6

sup
Rn
|∂αϕ|

)
, (4.11)

for some functions aj , 1 ≤ j ≤ N .

Remark 4.6. Proposition 4.3 is a special case of Theorem 4.4 where

ϕ(x) = 〈Q(x− x0), x− x0〉/2,

which guarantees ϕxx(x0) = Q.

In one-dimensional case, explicit expressions for these aj(x0) are given in [Zwo12,
(3.4.11)], and the details are given in [Zwo12, Second proof of Theorem 3.11]. For explicit
expressions for these aj(x0) in higher dimension, readers may refer to [Hör03, Theorem
7.7.5] for details. In [Esk11, Lemma 19.3] there is also another routine to prove the station-
ary phase lemmas. [DS99, Chapter 5] by Dimassi and Sjöstrand is also a good reference.
See also [Won89, §2.3 & §6.4].

4.3. Proofs of the results

We first prove the quadratic case. We shall follow the main steps stated at the end of
§4.1.

Proof of Theorem 4.2. We omit notationally the dependence of a on λ until related
clarifications are needed. Without loss of generality we assume x0 = 0, and a(0) = 1. For
readers’ convenience we rewrite the expression of I here:

I(λ) =

∫
Rn
eiλ〈Qx,x〉/2a(x) dx.

Step 1: cutoff singularity of the phase function. According to the assumption on Q,
we know there exists a decomposition Q = PΛP T for certain orthogonal matrix P and
diagonal matrix Λ := (αj)j=1,··· ,n. Making change of variable y = P Tx, we have

I =

∫
Rn
a(Py)eiλ

∑n
j=1 αjy

2
j /2 dy

=

∫
Rn
eiλ

∑n
j=1 αjy

2
j /2(1− χ(y))f(y) dy +

∫
Rn
eiλ

∑n
j=1 αjy

2
j /2χ(y)f(y) dy (detP = 1)

=: J1 + J2, (4.12)

where f(y) := a(Py) and χ ∈ C∞c (Rn) is a cutoff function satisfying 0 ≤ χ ≤ 1 and χ ≡ 1
in a neighborhood of the origin. We will see:

J1 is rapidly decaying and J2 gives the desired asymptotics.
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Step 2: J1 is rapidly decaying. Noting that the neighborhoods of the origin is not
included in the support of the integrand in J1, we can estimate J1 by using integration by
parts (in the oscillatory integral sense). For any integer M ∈ N we have

|J1| = |
∫
Rn

(∑j α
−1
j yj∂j

iλ|y|2
)M

(eiλ
∑n
j=1 αjy

2
j /2)

[
(1− χ(y))f(y)

]
dy|

. λ−M
∫
Rn
|
(∑

j

∂j ◦ (yj |y|−2)
)M[

(1− χ(y))f(y)
]
|dy

. λ−M
∫

supp(1−χ)

∑
|α|≤M

CM ;α|y||α|−2M |∂α((1− χ)f(y))|dy (4.13)

. λ−M
(
C
∑
|α|≤M

sup
{0<χ<1}

|∂αf |+
∑
|α|≤M

CM ;α

∫
{χ=0}

|y||α|−2M |∂αf(y)|dy
)

(4.14)

. λ−M
∑
|α|≤M

(
sup

{0<χ<1}
|∂αa|+

∫
{χ=0}

|y|−n−1〈y〉|α|−2M+n+1|∂αa(y)|dy
)

. λ−M
∑
|α|≤M

(
sup

{0<χ<1}
|∂αa|+ sup

Rn

|∂αa(y)|
〈y〉2M−n−1−|α|

)
. λ−M

∑
|α|≤M

sup
Rn

|∂αa(y)|
〈y〉2M−n−1−|α| . (4.15)

The inequality (4.13) is due to the fact that( ∑
1≤j≤n

∂j ◦ (yj |y|−2)
)M

ϕ =
∑
|α|≤M

CM ;α|y||α|−2M∂αϕ,

which can be derived by induction and we omit the details. Inequality (4.14) is due to the
fact that ∂α((1− χ)f) = ∂αf in {χ = 0}.

Step 3: J2 and Plancherel theorem. We turn to J2. Keep in mind that f(y) = a(Py)
and χf is compactly support and in Cn+2N+3

c (Rn). Here we analyze J2 by borrowing idea
from [Zwo12, First proof of Theorem 3.11]. First we use Plancherel theorem (which states

(f, g) = (f̂ , ĝ)),

J2 =

∫
Rn
e−iλ

∑n
j=1 αjy

2
j /2χf(y) dy =

∫
Rn
F{e−iλ

∑n
j=1 αj(·)2/2}(ξ) · χ̂f(ξ) dξ

=

∫
Rn

(λ)−n/2
e−

iπ
4

sgnQ

|detQ|1/2
e
i
2λ
α−1
j ξ2j · χ̂f(ξ) dξ (by (4.4))

=:
(2π

λ

)n/2 e
iπ
4

sgnQ

|detQ|1/2
J(1/λ, 1/λ, χf), (4.16)

where we ignored the summation notation over j and the function J is defined by

J(h1, h2, χf) := (2π)−n/2
∫
Rn
e

ξ2j h1

i2αj · χ̂f(ξ; 1/h2) dξ. (4.17)

Note that in (4.17) we put the emphasis on the dependence of f on h2 (i.e. the dependence
of a on λ). The smoothness of J w.r.t. h1 is guaranteed by the L1 of derivatives of f ,
namely, we have the following claim whose justification will be clear in (4.20),

∀m ∈ N, max
|α|≤n+2m+1

‖∂αf‖L1(Rn) < +∞ ⇒ J(·, h2, f) ∈ Cm(R).
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Step 4: Taylor’s expansion. We abbreviate ∂h1 as ∂1. Expand J w.r.t. h1,

∂k1J(0, h2, χf) = (2π)−n/2
∫
Rn
∂k1 (e

ξ2j h1

i2αj )|h1=0 · χ̂f(ξ) dξ

= (2π)−n/2
∫
Rn

(
∑
j

ξ2
j

i2αj
)k · χ̂f(ξ) dξ

= (2π)−n/2
∫
Rn
T̂ kχf(ξ) dξ = T kf(0) = T k

(
a(Py)

)
|y=0

= (
i

2
P ljP kjα−1

j ∂kl)
ka(0) = Aka(0; 1/h2),

where T = i
2

∑
j

∂2j
αj

and A = i
2(Q−1)jl∂jl = 1

2i〈Q
−1D,D〉 (recall that D = 1

i∇ is regarded

as vertical). We expand J w.r.t. its first argument using the Taylor series (4.2),

J(h, h2, χf) =
∑
k≤N

hk

k!
∂khJ(0, h2, χf) +

hN+1

N !

∫ 1

0
(1− t)N · ∂N+1

1 J(th, h2, χf) dt

=
∑

0≤k≤N

(hA)k

k!
a(0;h2) +

hN+1

N !

∫ 1

0
(1− t)N · ∂N+1

1 J(th, h2, χf) dt. (4.18)

Step 5: the remainder term. By invoking (4.17), the remainder term in (4.18) can be
estimated as

|h
N+1

N !

∫ 1

0
(1− t)N · ∂N+1

1 J(th, h2, χf) dt|

≤CNhN+1

∫
Rn
|( −i

4αj
ξ2
j )N+1 · χ̂f(ξ; 1/h2)| dξ

≤ CNh
N+1

∑
|β|≤2N+2

Cβ‖(∂βx (χf(·; 1/h2)))∧‖L1(Rn).

By using (4.3), we can continue

|h
N+1

N !

∫ 1

0
(1− t)N · ∂N+1

1 J(th, h2, χf) dt|

≤ CNh
N+1

∑
|α|≤n+1
|β|≤2N+2

‖∂α+β
x (χf(·; 1/h2))‖L1(Rn) (4.19)

≤ CNh
N+1

∑
|α|≤n+2N+3

‖∂αx (χf(·; 1/h2))‖L1(Rn)

≤ CNh
N+1

∑
|α|≤n+2N+3

sup
suppχ

|∂αa(·; 1/h2)|. (4.20)

Letting h = h2 = 1/λ and combining (4.16), (4.17), (4.18) and (4.20), we obtain

J2 =

(
2π

λ

)n/2 e
iπ
4

sgnQ

|detQ|1/2
∑
j≤N

λ−j

j!

(
〈Q−1D,D〉

2i

)j
a(0;λ)

+ CNλ
−n

2
−N−1

∑
|α|≤n+2N+3

sup
suppχ

|∂αa(·;λ)|. (4.21)
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Combining (4.21) with (4.12), (4.15), we have

I =

(
2π

λ

)n/2 e
iπ
4

sgnQ

|detQ|1/2
∑
j≤N

λ−j

j!

(
〈Q−1D,D〉

2i

)j
a(0;λ)

+O
(
λ−

n
2
−N−1

∑
|α|≤n+2N+3

sup
suppχ

|∂αa(·;λ)|
)

+O
(
λ−M

∑
|α|≤M

sup
Rn

|∂αa(y;λ)|
〈y〉2M−n−1−|α|

)
,

which is (4.8). The proof is complete. �

Proof of Proposition 4.3. The statement of Proposition 4.3 is almost the same as
Theorem (4.2), except that M is set to be n + 2N + 3. Hence, we set M := n + 2N + 3,
then we have −M ≤ −n/2−N − 1, so

λ−M
∑
|α|≤M

sup
Rn

|∂αa(y;λ)|
〈y〉2M−n−1−|α| = λ−M

∑
|α|≤n+2N+3

sup
Rn

|∂αa(y;λ)|
〈y〉2(n+2N+3)−n−1−|α|

≤ λ−n/2−N−1
∑

|α|≤n+2N+3

sup
Rn

|∂αa(y;λ)|
〈y〉n+4N+5−|α| .

Also, for the first remainder term in (4.8) we have∑
|α|≤n+2N+3

sup
B(x0,1)

|∂αa(·;λ)| ≤ Cx0,n,N
∑

|α|≤n+2N+3

sup
y∈B(x0,1)

|∂αa(y;λ)|
〈y〉n+4N+5−|α|

≤ Cx0,n,N
∑

|α|≤n+2N+3

sup
Rn

|∂αa(y;λ)|
〈y〉n+4N+5−|α| .

Combining these with (4.8), we arrive at (4.10). The proof is complete. �

Based on Proposition 4.3, now we prove the more general case.

Proof of Theorem 4.4. Without loss of generality we assume x0 = 0, ϕ(0) = 0 and
a(0) = 1. Hence by the Taylor’s expansion (4.2) we have

ϕ(x) =
∑
j,k≤n

xjxk

∫ 1

0
(1− t) ∂jkϕ(tx) dt = xT ·

∫ 1

0
(1− t)ϕxx(tx) dt · x.

Note that |ϕxx(0)| 6= 0 and |ϕxx(x)| is continuous on x (ϕ ∈ C2), thus there exists a positive
constant r such that |ϕxx(x)| > |ϕxx(0)|/2 > 0 for all x ∈ B(0, r). Fix a cutoff function
χ ∈ C∞c (Rn) such that suppχ ⊂ B(0, r) and χ ≡ 1 in B(0, r/2). Hence:

• on B(0, r), matrix ϕxx is non-degenerate;
• on supp a\B(0, r), |∇ϕ(x)| is uniformly bounded away from 0.

Step 1: cutoff singularity of the phase function. We divide I into two parts

I(λ) =

∫
Rn

(1− χ(x))a(x)eiλϕ(x) dx+

∫
Rn
χ(x)a(x)eiλϕ(x) dx := I1 + I2, (4.22)

and we will show that I1 is rapidly decreasing w.r.t. λ while I2 can be analyzed by using
Theorem 4.2.

Step 2: I1 is rapidly decaying. For I1, denote L =
∑n

j=1

ϕxj
|∇ϕ|2∂xj , where ϕxj is short

for ∂xjϕ. Then 1
iλLe

iλϕ = eiλϕ and tLf =
∑n

j=1 ∂xj
( ϕxj f
|∇ϕ|2

)
. For any integer K ≤ 2N+2, I1

can be easily estimated as follows (which requires a ∈ Cn+K+1(Rn) and ϕ ∈ Cn+K+2(Rn))

I1 =

∫
Rn

(1− χ)a · ((iλ)−n−K−1LK+1eiλϕ(x)) dx



4.3. PROOFS OF THE RESULTS 39

= (iλ)−n−K−1

∫
Rn

(tL)n+K+1((1− χ)a) · eiλϕ(x) dx

= O(λ−n−K−1
∑

|α|≤n+K+1

‖∂αa‖L1(Rn)), λ→∞, K ≤ 2N + 2. (4.23)

As mentioned before, due to the presence of 1 − χ, the denominator |∇ϕ|2 in L keeps a
positive distance away from 0, guaranteeing that (tL)K((1−χ)a) is bounded and compactly
supported.

Step 3: Turn I2 into quadratic phase form (e.g. into “J2”). Now we turn to I2. Because
ϕ ∈ C2(Rn), ϕxx(x) is symmetric and thus there exist orthogonal matrix P (x) and diagonal
matrix Λ(x) = (αj(x))j=1,··· ,n such that

2

∫ 1

0
(1− t)ϕxx(tx) dt = P (x)Λ(x)P T (x).

Especially we have P (0)Λ(0)P T (0) = ϕxx(0). Denote αj = αj(0) and n×n diagonal matrix
Λ := (αj)j=1,··· ,n for short. Thus

Λ(x) = (

√
αj(x)

αj
)j=1,··· ,n · Λ · (

√
αj(x)

αj
)j=1,··· ,n.

Note that we can choose the support of χ to be small enough such that, on suppχ, αj(x)
doesn’t change sign, so αj(x)/αj will always be positive on suppχ. This grants the use of
the square root operation.

Let us make the change of variable:

y = Φ(x) :=

(√
αj(x)

αj

)
j=1,··· ,n

· P T (x) · x. (4.24)

Note that

ϕ ∈ Cn+2N+6 ⇒ Φ ∈ Cn+2N+4. (4.25)

We have

ϕ(x) =
1

2
xT ·

[
2

∫ 1

0
(1− t)ϕxx(tx) dt

]
· x =

1

2
xT ·

[
P (x)Λ(x)P T (x)

]
· x

=
1

2
[P T (x) · x]T · (

√
αj(x)

αj
)j=1,··· ,n · Λ · (

√
αj(x)

αj
)j=1,··· ,n · [P T (x) · x]

=
1

2

[(√αj(x)

αj

)
j=1,··· ,n · P

T (x) · x
]T · Λ · [(√αj(x)

αj

)
j=1,··· ,n · P

T (x) · x
]

=
1

2
〈Λy, y〉.

We have Φ(0) = 0. It is easy to check that ∂Φ
∂x (0) = P T (0). From (4.24) it is clear that

there exists a inverse of Φ, i.e. φ = Φ−1. Note that x = φ(Φ(x)) and

Φ ∈ Cn+2N+4 ⇒ φ ∈ Cn+2N+4. (4.26)

We have

I2 =

∫
Rn
χ(φ(y))a(φ(y)) · eiλ〈Λy,y〉/2 dφ(y)

=

∫
Rn
χ(φ(y))a(φ(y))| det∇yφ(y)| · eiλ〈Λy,y〉/2 dy
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=

∫
Rn
f(y)eiλ〈Λy,y〉/2 dy. (4.27)

where
f(y) = χ(φ(y)) · a(φ(y)) · | det∇yφ(y)|. (4.28)

Note that
φ ∈ Cn+2N+4, a ∈ Cn+2N+2 ⇒ f ∈ Cn+2N+2. (4.29)

Step 4: apply Proposition 4.3. From (4.28) we know f is compactly supported, so the
condition (4.9) for f is verified straightforwardly. By using Proposition 4.3 to (4.27), we
can obtain

I2(λ) =

(
2π

λ

)n/2 ei
π
4

sgn Λ

|det Λ|1/2
∑

0≤j≤N

λ−j

j!

(
〈Λ−1D,D〉

2i

)j
f(0)

+O(λ−
n
2
−N−1 ×

∑
|α|≤n+2N+3

sup
Rn
|∂αf |)

=

(
2π

λ

)n/2 ei
π
4

sgn Λ

|det Λ|1/2
∑

0≤j≤N

λ−j

j!

(
〈Λ−1D,D〉

2i

)j
f(0)

+O(λ−
n
2
−N−1 ×

∑
|α|≤n+2N+3

sup
Rn
|∂αa| ×

∑
|α|≤n+2N+6

sup
Rn
|∂αϕ|). (4.30)

It can be checked that sgn Λ = sgnϕxx(0) and det Λ = detϕxx(0).
Step 5: the leading term. We are now almost obtained (4.11) except for the explicit

computation of the leading term in (4.30). From the equality x = φ(Φ(x)) we know I =
∇yφ(Φ(x)) · ∇xΦ(x). Formula (4.24) implies Φ(0) = 0 and ∇xΦ(0) = P T (0), hence,

det∇yφ(0) = det∇yφ(Φ(0)) =
(

det∇xΦ(0)
)−1

=
(

detP T (0)
)−1

= 1.

Therefore,
f(0) = χ(φ(0)) · a(φ(0)) · | det∇yφ(0)| = χ(0) · a(0) = a(0). (4.31)

Combining (4.22), (4.23), (4.30) and (4.31), we arrive at the conclusion. �

Exercise

Exercise 4.1. Use (4.5) to derive (4.4).

Exercise 4.2. Show details about how to derive (4.7) from
∫
e−

iξ2

2
hâ(ξ) dξ.

Exercise 4.3. (optional) In (4.17), if we instead set

J(h, χf) := (2π)−n/2
∫
Rn
e

ξ2j h

i2αj · χ̂f(ξ; 1/h) dξ,

and later on expand J w.r.t. h at h = 0, will the computations following (4.17) still give
the desired result? Explain the reason briefly.

Exercise 4.4. Assume a ∈ C∞c (R2n) and denote a Lebesgue integral

I(y, η;λ) := (2π)−n
∫
R2n

eiλx·ξa(x+ y, ξ + η) dx dξ.

(1) fix y and η, and use Proposition 4.3 to find the asymptotic expansion of I w.r.t. λ
as λ→ +∞;

(2) write down the first 1 + n terms (the leading term + the first order terms) of the
asymptotic expansion.
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Hint: x · ξ = 1
2〈Q(x, ξ), (x, ξ)〉 with Q =

(
0 In×n

In×n 0

)
, where (x, ξ) is treated as a vertical

vector.

Exercise 4.5. Assume symbol a ∈ Sm(Rn × Rn) and denote an oscillatory integral

I(y, η) := (2π)−n
∫
R2n

eix·ξa(x+ y, ξ + η) dx dξ.

(1) is I well-defined? If it is, should the cutoff function χ (cf. (3.12)) be chosen to
cutoff ξ alone using χ(εξ), or cutoff x alone using χ(εx), or cutoff both x and ξ
together using χ(εx, εξ)?

(2) use Proposition 4.3 to find the asymptotic expansion of I w.r.t. 〈η〉 as |η| → +∞;
(3) write down the first 1 + n terms (the leading term + the first order terms) of the

asymptotic expansion.
(4) compare with the result in Exercise 4.4, and revise Remark 4.3.

Hint: Perform the change of variable ξ → 〈η〉ξ.



CHAPTER 5

Symbolic calculus of ΨDOs

In this chapter we show certain symbolic calculus of ΨDOs. We need some preparations.

Lemma 5.1. Assume a, b ∈ R such that |a| ≥ 1 and |b| ≥ 1, then for every m ∈ R there
exists a constant independent of a, b such that

〈ab〉m ≤ Cm〈a〉m〈b〉m, |a| ≥ 1, |b| ≥ 1.

Proof. When m ≥ 0, we have

〈ab〉m ' (1 + |ab|)m ≤ (1 + |a|)m(1 + |b|)m ≤ 〈a〉m〈b〉m.
When m < 0, because |a|, |b| ≥ 1, we have

〈ab〉m ' 1

(1 + |ab|)|m|
<

1

|ab||m|
= 〈a〉m〈b〉m(

〈a〉
|a|
〈b〉
|b|

)|m|

. 〈a〉m〈b〉m.
We proved the result. �

Lemma 5.2 (Peetre’s inequality). For ∀a, b ∈ Rn and ∀m ∈ R, there exists a constant
Cm independent of a and b such that

〈a± b〉m ≤ Cm〈a〉m〈b〉|m|.

Proof. For any a, b ∈ Rn, we have

1 + |a− b| ≤ 1 + |a|+ |b| ≤ (1 + |a|) · (1 + |b|).
Note that 〈a〉 ' 1 + |a|, so we can conclude Lemma 5.2 for the case where m ≥ 0.

When m < 0, we use the fact:

1 + |a| ≤ 1 + |a− b|+ |b| ≤ (1 + |a− b|) · (1 + |b|)
⇒ (1 + |a− b|) ≥ (1 + |a|) · (1 + |b|)−1.

Now assume m < 0, we have

(1 + |a− b|)m ≤ (1 + |a|)m · (1 + |b|)−m = (1 + |a|)m(1 + |b|)|m|.
The proof is complete. �

5.1. Composition of ΨDOs

Assume a ∈ Sm1 and b ∈ Sm2 . For notational convenience we denote T = Ta ◦ Tb, thus
for any ϕ ∈ S , we have

Tϕ = (2π)−n
∫
ei(x−y)·ξa(x, ξ)Tbϕ(y) dy dξ

= (2π)−n
∫
ei(x−z)·η

(
(2π)−n

∫
ei(x−y)·(ξ−η)a(x, ξ)b(y, η) dy dξ

)
ϕ(z) dz dη

= (2π)−n
∫
ei(x−z)·η

(
(2π)−n

∫
e−iy·ξa(x, η + ξ)b(x+ y, η) dy dξ

)
ϕ(z) dz dη

42



5.1. COMPOSITION OF ΨDOS 43

= (2π)−n
∫
ei(x−z)·ηc(x, η)ϕ(z) dz dη, (5.1)

where c is defined as the oscillatory integral

c(x, η) := (2π)−n
∫
e−iy·ξa(x, η + ξ)b(x+ y, η) dy dξ. (5.2)

If we could show c ∈ Sm for certain m, then it implies the composition of ΨDOs is still
a ΨDO. We use the stationary phase lemma under oscillatory integrals developed in §4 to
show this expectation.

To show c ∈ Sm, the task boils down to show the asymptotics of c and its derivatives
w.r.t. |η|, thus we set λ := 〈η〉, so

c(x, η) = (2π)−nλn
∫
e−iλy·ξa(x, λ(η̃ + ξ))b(x+ y, η) dy dξ, where η̃ := η/〈η〉.

To make better correspondence with notations in §4, we set

cx,η(y, ξ) := a(x, λ(η̃ + ξ))b(x+ y, η),

thus

c(x, η) = (2π)−nλn
∫
R2n

eiλ〈Q(y,ξ),(y,ξ)〉/2cx,η(y, ξ) d(y, ξ), (5.3)

where (y, ξ) is treated as a 2n-dim vertical vector and

Q =

(
0 −I
−I 0

)
(⇒ Q−1 = Q, sgnQ = 0, and detQ = ±1).

In cx,η(y, ξ), we regard (x, η) as irrelevant parameters make the following correspondence:

function variable fixed point in total dimension
In Prop. 4.3 a x x0 a(x− x0) n

at here cx,η (y, ξ) (y0, ξ0) = 0 cx,η(y, ξ) 2n

To use Proposition 4.3, the only thing left to check is (4.9), namely, to check

∀α, β : |α|+ |β| ≤ 2n+ 2N + 3, |∂αy ∂βη
(
cx,η(y, ξ)

)
| . CN,n,α,β(λ)〈(y, ξ)〉2N+2. (5.4)

For |ξ| ≥ 2, we have

|∂αy ∂
β
ξ

(
cx,η(y, ξ)

)
| = |∂αy ∂

β
ξ

[
a(x, λ(η̃ + ξ))b(x+ y, η)

]
|

≤ Cα,βλ|β||∂βξ a(x, λ(η̃ + ξ))| · |∂αx b(x+ y, η)|

≤ Cα,βλ|β|〈λ(η̃ + ξ)〉m1−|β|〈η〉m2 .

Because |η̃| < 1, when |ξ| ≥ 2 we can have |η̃ + ξ| ≥ 1. Recall that λ ≥ 1. Hence when
|ξ| ≥ 2, we can use Lemma 5.1 to continue the computation as follows,

|∂αy ∂
β
ξ

(
cx,η(y, ξ)

)
| ≤ Cα,βλ|β|〈λ〉m1−|β|〈η̃ + ξ〉m1−|β|〈η〉m2

≤ Cα,βλm1〈η̃ + ξ〉m1−|β|λm2 (λ = 〈η〉 ⇒ λ ' 〈λ〉)

≤ Cα,βλm1+m2〈ξ〉m1−|β|〈η̃〉|m1−|β|| (Lemma 5.2)

≤ Cα,βλm1+m2〈ξ〉m1−|β|. (5.5)

We emphasize that (5.5) holds when |ξ| ≥ 2, and the constant Cα,β is uniform for x, y and
η. But due to the continuity, (5.5) actually holds for all ξ ∈ Rn. Hence, the condition (5.4)
is satisfied when 2N + 2 > m1, with CN,n,α,β(λ) = Cα,βλ

m1+m2 , so we can use Proposition
4.3 directly on (5.3) to obtain

c(x, η) = (2π)−nλn
∫
R2n

eiλ〈Q(y,ξ),(y,ξ)〉/2cx,η(y, ξ) d(y, ξ)
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= (2π)−nλn ×
(

2π

λ

)n ∑
0≤j≤N

λ−j

j!

(
〈Q−1D(y,ξ), D(y,ξ)〉

2i

)j
cx,η(0, 0)

+ λn ×O
(
λ−n−N−1

∑
|α|+|β|≤2n+2N+3

sup
(y,ξ)∈R2n

|∂αy ∂
β
ξ

(
cx,η(y, ξ)

)
|

〈(y, ξ)〉2n+4N+5−|α|−|β|

)
=

∑
0≤j≤N

λ−j

j!
(Dy · ∇ξ)jcx,η(0, 0) +O

(
λ−N−1+m1+m2

)
=
∑
|α|≤N

λ−|α|

α!
Dα
y ∂

α
ξ

(
cx,η(y, ξ)

)
|(y,ξ)=(0,0) +O

(
λ−N−1+m1+m2

)
(5.6)

=
∑
|α|≤N

λ−|α|

α!
λ|α|∂αη a(x, λη̃)Dα

x b(x, η) +O
(
λ−N−1+m1+m2

)
=
∑
|α|≤N

1

α!
∂αη a(x, η)Dα

x b(x, η) +O
(
λ−N−1+m1+m2

)
. (5.7)

In (5.6) we used

(Dy · ∇ξ)j = (Dy1∂ξ1 + · · ·+Dyn∂ξn)j =
∑
|α|=j

j!

α!
Dα
y ∂

α
ξ . (5.8)

By letting N to be large enough, (5.7) implies the following inequality

|∂αx ∂βη c(x, η)| . 〈η〉m1+m2−|β| (5.9)

holds when |α| = |β| = 0. To show the case when α and/or β are nonzero, we compute

∂αx ∂
β
η c(x, η) = (2π)−nλn∂αx ∂

β
η

∫
e−iλy·ξa(x, λ(η̃ + ξ))b(x+ y, η) dy dξ

' λn
∑
α,β

∂βη

∫
e−iλy·ξ∂α

′
x ∂

β′
η a(x, λ(η̃ + ξ))∂α

′′
x ∂β

′′
η b(x+ y, η) dy dξ. (5.10)

Note that λη̃ = η. Then we repeat the long computation (with the help of Proposition 4.3)
as in (5.7), and this can gives (5.9) for all nonzero α and β. The rigorous computation is
left as a exercise. Therefore, c ∈ Sm1+m2 .

By letting N to be large enough, (5.7) implies

c(x, η) ∼
∑
α

1

α!
∂αη a(x, η)Dα

x b(x, η),

We proved the following result:

Theorem 5.3. Assume m1, m2 ∈ R, a ∈ Sm1 and b ∈ Sm2. Then Ta ◦ Tb ∈ Ψm1+m2.

Denote the symbol of Ta ◦ Tb as a#b , then a#b ∈ Sm1+m2 and

a#b(x, ξ) ∼
∑
α

1

α!
∂αη
(
a(x, η)

)∣∣
η=ξ

Dα
y

(
b(y, ξ)

)∣∣
y=x

.

Remark 5.1. We deliberately write ∂αη
(
a(x, η)

)∣∣
η=ξ

instead of ∂αξ a(x, ξ), to avoid pos-

sible computation mistakes. The same for b.
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Remark 5.2. When symbol a is of the form a(x, ξ) =
∑
|α|≤m1

dα(x)ξα where dα ∈ C∞
are all bounded, or when symbol b(x, ξ) is independent of x-variable, the asymptotics in
Theorem (5.3) stops in finite term and the asymptotic is “exact”: we can replace ‘∼’ by
‘=’. This can be seen from the expression (5.2) of c(x, η). See also Exercise 5.3 and
[Mar02, Remark 2.6.9].

From Theorem 5.3 we know, if a ∈ Sm1 and b ∈ Sm2 , then

a#b = ab+ Sm1+m2−1 = ab+
1

i
∇ξa · ∇xb+ Sm1+m2−2 = ab+

1

i
{a, b}+ Sm1+m2−2. (5.11)

5.2. Reduction of variables

As we have seen in (2.5) that

(Tσu, ϕ) = (u, (2π)−n
∫
ei(y−x)·ξσ(x, ξ)ϕ(x) dx dξ).

In practice we may encounter ΨDOs of the form∫
ei(x−y)·ξa(x, y, ξ)ϕ(y) dy dξ

where the symbol a depends not only on x but also on y, e.g. in §5.3 we shall see ΨDOs
possessing this type of symbols. We have the following result.

Theorem 5.4. Assume a ∈ Sm(Rnx×Rny×Rnξ ), then there exists symbol a′ ∈ Sm(Rnx×Rnξ )
such that

Ta′ϕ(x) = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ)ϕ(y) dy dξ, ∀ϕ ∈ S (Rn), (5.12)

and this Ta′ takes the following as its kernel:

K(x, y) := (2π)−n
∫
ei(x−y)·ξa(x, y, ξ) dξ.

Moreover, a′ has the asymptotics

a′(x, ξ) ∼
∑
α

1

α!
Dα
y ∂

α
η

(
a(x, y, η)

)
|(y,η)=(x,ξ).

If (5.12) holds, we will have∫
ei(x−y)·ξa′(x, ξ)ϕ(y) dy dξ =

∫
ei(x−y)·ξa(x, y, ξ)ϕ(y) dy dξ

and so we can expect ∫
ei(x−y)·ξa′(x, ξ) dξ =

∫
ei(x−y)·ξa(x, y, ξ) dξ

to hold in the oscillatory integral sense. By changing y to y+x, we see the LHS is a Fourier
transform,

Fξ{a′(x, ξ)}(y) = (2π)−n/2
∫
e−iy·ξa(x, y + x, ξ) dξ,

so

a′(x, η) = (2π)−n
∫
eiy·η dy ·

∫
e−iy·ξa(x, y + x, ξ) dξ

= (2π)−n
∫
e−iy·(ξ−η)a(x, y + x, ξ) dy dξ
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= (2π)−n
∫
e−iy·ξa(x, y + x, ξ + η) dy dξ

= (2π)−nλn
∫
e−iλy·ξa(x, y + x, λ(ξ + η̃)) dy dξ,

where again λ := 〈η〉 and η̃ := η/〈η〉. The rigorous proof we go by first set a′ as in this way,
and then prove a′ is a symbol of order m.

Proof of Theorem 5.4. We set

a′(x, η) = (2π)−nλn
∫
e−iλy·ξa(x, y + x, λ(ξ + η̃)) dy dξ,

where λ := 〈η〉 and η̃ := η/〈η〉. Following the arguments preceding this proof, we can show
that a′ satisfies (5.12). It’s left to show a′ satisfies the asymptotics, which will automatically
show a′ ∈ Sm.

To show a′ satisfies the asymptotics, we use the stationary phase lemma in a similar
manner as in §5.1. We set

ax,η(y, ξ) := a(x, x+ y, λ(ξ + η̃)),

thus

a′(x, η) = (2π)−nλn
∫
R2n

eiλ〈Q(y,ξ),(y,ξ)〉/2ax,η(y, ξ) d(y, ξ), (5.13)

where y and ξ is treated as horizontal vector and

Q =

(
0 −I
−I 0

)
(⇒ Q−1 = Q, sgnQ = 0, and detQ = ±1).

For |ξ| ≥ 2, we have

|∂αy ∂
β
ξ

(
ax,η(y, ξ)

)
| = |∂αy ∂

β
ξ

[
a(x, x+ y, λ(ξ + η̃))

]
|

≤ Cα,βλ|β||(∂αy ∂
β
ξ a)(x, x+ y, λ(ξ + η̃))|

≤ Cα,βλ|β|〈λ(ξ + η̃)〉m−|β|

≤ Cα,βλ|β|〈λ〉m−|β|〈ξ + η̃〉m−|β| (Lemma 5.1)

. Cα,βλ
m〈ξ〉m−|β|〈η̃〉|m−|β|| (λ ' 〈λ〉, Lemma 5.2)

≤ Cα,βλm〈ξ〉m−|β|.
Hence, the condition (4.9) is satisfied when 2N + 2 > m, with CN,n,α,β(λ) = Cα,βλ

m, so we
can use Proposition 4.3 directly on (5.13) to obtain

a′(x, η) = (2π)−nλn
∫
R2n

eiλ〈Q(y,ξ),(y,ξ)〉/2cx,η(y, ξ) d(y, ξ)

= (2π)−nλn ×
(

2π

λ

)n ∑
0≤j≤N

λ−j

j!

(
〈Q−1D(y,ξ), D(y,ξ)〉

2i

)j
cx,η(0, 0)

+ λn ×O
(
λ−n−N−1

∑
|α|+|β|≤2n+2N+3

sup
(y,ξ)∈R2n

|∂αy ∂
β
ξ

(
cx,η(y, ξ)

)
|

〈(y, ξ)〉2n+4N+5−|α|−|β|

)
=

∑
0≤j≤N

λ−j

j!
(Dy · ∇ξ)jcx,η(0, 0) +O

(
λ−N−1+m

)
=
∑
|α|≤N

λ−|α|

α!
Dα
y ∂

α
ξ

(
cx,η(y, ξ)

)
|(y,ξ)=(0,0) +O

(
λ−N−1+m

)
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=
∑
|α|≤N

λ−|α|

α!
Dα
y ∂

α
ξ

(
a(x, y + x, λξ + η)

)
|(y,ξ)=(0,0) +O

(
λ−N−1+m

)
=
∑
|α|≤N

1

α!
Dα
y ∂

α
ξ

(
a(x, y + x, ξ + η)

)
|(y,ξ)=(0,0) +O

(
λ−N−1+m

)
=
∑
|α|≤N

1

α!
Dα
y ∂

α
ξ

(
a(x, y, ξ)

)
|(y,ξ)=(x,η) +O

(
λ−N−1+m

)
. (5.14)

Due to the same logic as in (5.9)-(5.10), we can let N to be large enough, and by doing
so, (5.14) can implies c′ ∈ Sm and

c′(x, η) ∼
∑
α

1

α!
Dα
y ∂

α
ξ

(
a(x, y, ξ)

)
|(y,ξ)=(x,η),

The proof is complete. �

Theorem 5.4 completes the proof of Lemma 2.19.

5.3. The Adjoint and transpose

We define the adjoint and transpose of the ΨDO Ta acting on Schwartz functions as
follows,

adjoint T ∗a : (T ∗au, v) := (u, Tav),

transpose tTa : 〈tTau, v〉 := 〈u, Tav〉,
(5.15)

where u, v ∈ S .

Theorem 5.5. Assume a(x, ξ) ∈ Sm. The T ∗a and tTa defined in (5.15) exist uniquely,
and both are ΨDOs. There exist symbols a∗ and ta of the same order as a such that T ∗a = Ta∗
and tTa = Tta. Moreover, we have the asymptotics

a∗(x, ξ) ∼
∑
α

1

α!
Dα
x∂

α
ξ a(x, ξ),

ta(x, ξ) ∼
∑
α

(−1)|α|

α!
Dα
x∂

α
ξ a(x,−ξ).

Remark 5.3. The computation (2.5) gives an very efficient intuitive way to compute
the asymptotics of a∗.

Proof. Here we only show the proof for a∗, and that of ta is left as an exercise.
Step 1. Existence. As explained at the beginning of §5.2, for u, v ∈ S we have

(u, Tav) = ((2π)−n
∫
ei(y−x)·ξa(x, ξ)u(x) dx dξ, v)

so if we define a mapping T as

Tu(y) := (2π)−n
∫
ei(y−x)·ξa(x, ξ)u(x) dx dξ,

then (Tu, v) := (u, Tav). Also, this T is of the form (5.12), so by Theorem 5.4 we know T
is a ΨDO.

Step 2. Uniqueness. Assume there are two adjoint of T , and we denote them as T1

and T2, respectively. Then for any u, v ∈ S we can conclude

(T1u, v) = (u, Tav) = (T2u, v) ⇒ ((T1 − T2)u, v) = 0.
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Hence, (T1 − T2)u = 0 for any u ∈ S and so T1 = T2.
Step 3. Asymptotics. Theorem 5.4 suggests that the symbol of T , denoted as a∗,

satisfies the asymptotics:

a∗(x, ξ) ∼
∑
α

1

α!
Dα
y ∂

α
η

(
a(y, η)

)
|(y,η)=(x,ξ) =

∑
α

1

α!
Dα
x∂

α
ξ a(x, ξ).

The proof is complete. �

Exercise

Exercise 5.1. Use stationary phase lemmas to complete the estimate in ∂αx ∂
β
η c(x, η) in

(5.10). Hint: mimic the computations in (5.7).

Exercise 5.2. Assume a ∈ Sm1 and b ∈ Sm2 . Utilize Theorem 5.3 to show that
[Ta, Tb] ∈ Ψm1+m2−1, where [Ta, Tb] := TaTb − TbTa is called the commutator of Ta and Tb,
and TaTb is a shorthand of the composition Ta ◦ Tb.

Exercise 5.3. Prove the statement in Remark 5.2. In Theorem 5.3, assume a(x, ξ) =∑
|α|≤m1

dα(x)ξα where dα ∈ C∞ are all bounded, or assume b = b(ξ), then show that

c(x, η) =
∑
|α|≤N

1

α!
∂αη a(x, η)Dα

x b(x, η)

for some finite integer N . Hint: substitute the expressions of a or b into (5.2) and use
Lemma 3.18.

Exercise 5.4. Mimic the proof for a∗ in Theorem 5.5 to prove the result for ta.

Exercise 5.5. Let T1, T2 be two ΨDOs. Show that (T ∗1 )∗ = T1 and (T1T2)∗ = T ∗2 T
∗
1 .

Here “T ∗” stands for taking the adjoint of T .



CHAPTER 6

Parametrix and Boundedness of ΨDOs

In this chapter we investigate the the parametrix and boundedness of ΨDOs, both of
which heavily utilize symbolic calculus. The notion of parametrix can be understood as the
approximate inverse, or the inverse module C∞ an operator. For a homogeneous polynomial
T (ξ) :=

∑
|α|=m aαξ

α, its corresponding operator T := T (D) is a ΨDO.

To find the inverse, a typical idea is to design S(ξ) := 1/T (ξ) and let S := S(D).
Inaccurately this seems to give us ST = I where I is the identity operator, which is
(inaccurately) because by Theorem 5.3 (and Remark 5.2) we have

symbol of ST =
∑
α

1

α!
∂αξ
(
T (ξ)

)
Dα
x

(
S(ξ)

)
= T (ξ)S(ξ) = 1.

Unfortunately, this is wrong, because 1/T (ξ) has singularities when T (ξ) = 0. And due to
this reason, S may not be a ΨDO so Theorem 5.3 is not applicable here.

However, the S can be saved if we cutoff the singularity. Specifically, fix a χ ∈ C∞c with
χ(0) = 1 and we re-design S as S(ξ) := (1 − χ(ξ))/T (ξ) and once again let S := S(D). It
is straightforward that this new S(ξ) is a symbol and so S is a ΨDO. Again, by Theorem
5.3 (and Remark 5.2) we have

symbol of ST =
∑
α

1

α!
∂αξ
(
T (ξ)

)
Dα
x

(
S(ξ)

)
= T (ξ)S(ξ)

= T (ξ)(1− χ(ξ))/T (ξ)

= 1− χ(ξ).

It is also true that the symbol of TS = 1− χ(ξ). Note that χ(D) ∈ Ψ−∞, so we conclude

ST = I + Ψ−∞, TS = I + Ψ−∞.

This inspires us to introduce the notion of parametrix.

6.1. Parametrix

In what follows we use I to signify the identity operator unless otherwise stated.

Definition 6.1 (Parametrix). Assume m ∈ R and T ∈ Ψm. If there exists a ΨDO S
such that ST − I ∈ Ψ−∞, we call S a left parametrix of T . If TS − I ∈ Ψ−∞, we call S a
right parametrix of T . We call S a parametrix of T if it is both a left and a right parametrix.

The notion of left and right parametrix is somewhat redundant.

Lemma 6.2. Assume both S and T both ΨDOs. If S is a left (right) parametrix of T ,
and T has a right (left) parametrix, then S is also a right (left) parametrix of T .

Proof. We only prove the left-case. There exists S′ such that TS′ = I + Ψ−∞. From
ST = I + Ψ−∞ we have (ST )S′ = S′+ Ψ−∞ = S(TS′), so S′+ Ψ−∞ = S(I + Ψ−∞), which
gives S = S′ + Ψ−∞. Therefore,

TS = T (S′ + Ψ−∞) = TS′ + Ψ−∞ = I + Ψ−∞ + Ψ−∞ = I + Ψ−∞,

which implies S is a right parametrix of T . �

49
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The parametrix of a ΨDO is not always exists. And in contrast with the notion of
inverse of an operator, when parametrices exist, they are not unique.

Lemma 6.3. Assume S is a parametrix of T , and R ∈ Ψ−∞, then S + R is also a
parametrix of T .

The proof is left as an exercise. One of the condition that guarantees the existence of
parametrix is the ellipticity.

Definition 6.4 (Ellipticity). Assume m ∈ R and a ∈ Sm. We call a and also its
corresponding ΨDO Ta elliptic when there exist fixed positive constants C and R such that

|a(x, ξ)| ≥ C〈ξ〉m, when x ∈ Rn, |ξ| ≥ R.

There is an equivalent definition for the ellipticity of a symbol.

Lemma 6.5. Assume m ∈ R and a ∈ Sm. The ellipticity condition for a is equivalent
to the fact that there exist two positive constants C and D such that

|a(x, ξ)| ≥ C〈ξ〉m −D〈ξ〉m−1, ∀x, ξ ∈ Rn. (6.1)

Proof. Assume a ∈ Sm is elliptic, then there are constants C, R > 0 such that

|a(x, ξ)|/〈ξ〉m ≥ C, ∀|ξ| ≥ R,

so for any positive constant D we have

|a(x, ξ)|/〈ξ〉m ≥ C −D〈ξ〉−1, (6.2)

for ∀|ξ| ≥ R. If we set D := C〈R〉, then

∀|ξ| ≤ R, C〈ξ〉 ≤ D ⇒ C −D〈ξ〉−1 ≤ 0,

so (6.2) holds for both |ξ| ≥ R and |ξ| ≤ R. This gives (6.1).
On the other hand, from (6.1) it is easy to see a is elliptic. �

We will show that

Ellipticity ⇔ ∃parametrix.

First, we show the ellipticity condition gives the existence of parametrices.

Theorem 6.6 (Ellipticity⇒ parametrix). Assume m ∈ R and a ∈ Sm and a is elliptic,
then Ta has a parametrix.

Proof. Here we use the notation σ(T ) to represent the symbol of a ΨDO T , the
well-definedness of the mapping σ is guaranteed by Lemma 2.11. We denote Ta as A for
simplicity. Fix a cutoff function χ ∈ C∞c (Rn) such that χ(ξ) = 1 when |ξ| ≤ R and χ(ξ) = 0
when |ξ| ≥ R+ 1, where the R is given in Definition 6.4.

Step 1. Define b0(x, ξ) := (1 − χ(ξ))/a(x, ξ) and B0 := Tb0 , then b0 is well-defined
because the denominator is nonzero in the support of 1 − χ. Also, it can be checked that
b0 is a symbol of order −m (see Exercise 6.2). Then according to Theorem 5.3, we have

σ(AB0) = a(1− χ)/a− r1 = 1− χ− r1, for some r1 ∈ S−1.

Step 2. Define b1(x, ξ) := (1 − χ(ξ))/a(x, ξ) · r1(x, ξ) ∈ S−m−1 and B1 := Tb1 . Again,
according to Theorem 5.3, we have

σ(A(B0 +B1)) = σ(AB0) + σ(AB1) = 1− χ− r1 + a(1− χ)/ar1 − r2

= 1− (1 + r1)χ− r2, for some r2 ∈ S−2.
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Step 3. Define recursively bj(x, ξ) := (1−χ(ξ))/a(x, ξ)·rj(x, ξ) ∈ S−m−j and Bj := Tbj .
According to Theorem 5.3, we have

σ(A(B0 + · · ·+Bj)) = σ(A(B0 + · · ·+Bj−1)) + σ(ABj)

= [1− (1 + r1 + · · ·+ rj−1)χ− rj ] + a(1− χ)/arj − rj+1

= 1− (1 + r1 + · · ·+ rj)χ− rj+1, for some rj+1 ∈ S−j−1.

Step 4. According to Theorem 2.6, there exists b ∈ S−m such that b ∼
∑

j bj . Denote

B = Tb, so for any N ∈ N there holds B = B0 + · · ·BN +Ψ−m−N−1. Hence we can compute
the symbol of AB as follows,

σ(AB) = σ(A(B0 + · · ·BN + Ψ−m−N−1))

= σ(A(B0 + · · ·BN )) + σ(AΨ−m−N−1)

= 1− (1 + r1 + · · ·+ rN )χ− rN+1 + S−N−1 = 1 + S−N−1, (6.3)

where the last equal sign is due to χ ∈ S−∞ and rN+1 ∈ S−N−1. Due to the arbitrariness
of N , (6.3) implies that

AB − I ∈ Ψ−∞,

so B is right parametrix of A. By repeating steps 1-4 we can also show A has a right
parametrix, so by Lemma 6.2 we conclude that B is a parametrix of A. �

Second, we show the existence of parametrices gives the ellipticity.

Theorem 6.7 (Parametrix⇒ ellipticity). Assume m ∈ R and a ∈ Sm and Ta has either
a right parametrix or a left parametrix, then Ta is elliptic.

Proof. Assume Tb is the right parametrix, then b is necessarily a symbol of order −m,
so

σ(TaTb) = ab+ S−1, and σ(TaTb) = σ(I + Ψ−∞) = 1 + S−∞,

thus

ab = 1 + S−1 + S−∞ = 1 + S−1.

Therefore, when |ξ| is large enough

∀(x, ξ) ∈ R2n, |a(x, ξ)b(x, ξ)− 1| ≤ C〈ξ〉−1.

Therefore, 〈ξ〉 ≥ C/2 is large enough, we can conclude{
|a(x, ξ)b(x, ξ)| ≥ 1/2

b(x, ξ) 6= 0 when 〈ξ〉 is large enough
⇒ |a(x, ξ)| ≥ 1/(2|b(x, ξ)|).

This gives

|a(x, ξ)| ≥ 〈ξ〉m/2 when 〈ξ〉 ≥ C/2,
so a is elliptic.

The proof for the left-case is similar. �

From Theorems 6.6 & 6.7, we see that the condition “T has a right (left) parametrix”
in Lemma 6.2 can be lifted.

Proposition 6.8. Assume both S and T are ΨDOs. If S is a left (right) parametrix of
T , then S is also a right (left) parametrix of T .

Proof. If S is a left (right) parametrix of T , then by Theorem 6.7 we know that T is
elliptic, so by Theorem 6.6 we know T has a right (left) parametrix. Then Lemma 6.2 tells
us S is a right (left) parametrix of T . �
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We recall that when T is a ΨDO, T doesn’t increase the singular support of a distribution
(see Theorem 2.21). Now if we know T is also elliptic, then T doesn’t decrease the singular
support.

Lemma 6.9. Assume T is an elliptic ΨDO and u ∈ E ′, then

sing supp(Tu) = sing suppu.

Readers may compare Lemma 6.9 with Theorem 2.21.

Proof. Denote Tu = f , then Theorem 2.21 implies

sing supp(Tu) ⊂ sing suppu.

Theorem 6.6 implies T possesses parametrices. Let S be a parametrix of T . Then we have
Sf = STu = (I + Ψ−∞)u = u+ C∞(Rn), so

sing suppu = sing supp(Sf) ⊂ sing supp f = sing supp(Tu).

The proof is done. �

We will revisit the notion of parametrix and ellipticity in §9.1.

6.2. The L2 boundedness

Lemma 6.10 (Schur estimate). Assume K ∈ L1
loc(R2n) and for ϕ ∈ L1

loc(Rn) we denote
Tϕ(x) :=

∫
Rn K(x, y)ϕ(y) dy. Also, denote

L := sup
x∈Rn

∫
Rn
|K(x, y)| dy, R := sup

y∈Rn

∫
Rn
|K(x, y)|dx. (6.4)

When L,R < +∞, for ∀p ∈ [1,+∞] and ϕ ∈ Lp(Rn) we have

‖Tϕ‖Lp ≤ L1−1/pR1/p‖ϕ‖Lp .

Proof. When p = +∞ is trivial, we have

‖Tϕ‖L∞ = ess supx|
∫
K(x, y)ϕ(y) dy| ≤ ess supx

∫
|K(x, y)|dy · ess supy|ϕ(y)|

= L‖ϕ‖L∞ .
When p = 1, we have

‖Tϕ‖L1 = ‖
∫
K(x, y)ϕ(y) dy‖L1 ≤

∫
‖K(·, y)‖L1 |ϕ(y)| dy

≤ R
∫
|ϕ(y)| dy = R‖ϕ‖L1 .

Now we assume 1 < p < +∞. Let p′ = p/(p− 1), so 1 = 1/p+ 1/p′. We have

|Tϕ(x)| ≤
∫
|K(x, y)ϕ(y)| dy =

∫
|K(x, y)|1/p′ |K(x, y)|1/p|ϕ(y)|dy

≤
( ∫
|K(x, y)| dy

)1/p′( ∫ |K(x, y)||ϕ(y)|p dy
)1/p

(by Hölder’s ineq.)

≤ L1/p′
( ∫
|K(x, y)||ϕ(y)|p dy

)1/p
.

Hence,

‖Tϕ‖Lp ≤ L1/p′
( ∫∫

|K(x, y)||ϕ(y)|p dy dx
)1/p ≤ L1/p′

(
R

∫
|ϕ(y)|p dy

)1/p
≤ L1/p′R1/p‖ϕ‖Lp .
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The proof is complete. �

As already mentioned in Remark 3.2, when the order m is small enough, Tσ possesses
certain types of boundedness.

Lemma 6.11. In Rn, we assume m < −n and σ ∈ Sm(Rnx × Rnξ ), then the ΨDO

Tσ : Lp(Rn)→ Lp(Rn) is bounded.

Proof. Denote the kernel of Tσ as K, so

K(x, y) = (2π)−n
∫
ei(x−y)·ξσ(x, ξ) dξ.

Because σ ∈ Sm with m < −n, we know that integral above is absolutely integrable. This
means that K is a well-defined function in R2n, especially, K is well-defined on the diagonal
{(x, x) ; x ∈ Rn}. However, we remind the readers that the condition “m < −n” doesn’t
guarantee that K is also C∞ on the diagonal (recall that Lemma 3.9 tells us K is C∞ off
diagonal). The value of K on R2n is uniformly bounded, because

|K(x, y)| ≤ (2π)−n
∫
|σ(x, ξ)| dξ ≤ (2π)−n

∫
C〈ξ〉m dξ ≤ C.

Because K is well-defined and uniformly bounded on R2n, we can define the corre-
sponding L and R of it as in (6.4), and we can also enhance the estimate in Lemma 3.9 as
follows,

|K(x, y)| ≤ C〈x− y〉−n−1, ∀x, y ∈ Rn,
which implies both L and R are finite. Because Tσϕ(x) =

∫
Rn K(x, y)ϕ(y) dy, we can use

Lemma 6.10 to conclude ‖Tσϕ‖Lp . ‖ϕ‖Lp . The proof is complete. �

Theorem 6.12 (L2 boundedness). Assume symbol a ∈ S0, then Ta : L2(Rn)→ L2(Rn)
is bounded.

Proof. Recall the definition for “a#b” in Theorem 5.3. To prove the result, it amounts
to find a suitable positive constant M such that for ∀ϕ ∈ S ,

‖Taϕ‖2L2 ≤M‖ϕ‖2L2 ⇔ ((M − T ∗aTa)ϕ,ϕ) ≥ 0.

Our strategy is: we try to find such a M so that M − T ∗aTa can be represented as B∗B for
some B so that

((M − T ∗aTa)ϕ,ϕ) = (B∗Bϕ,ϕ) = (Bϕ,Bϕ) ≥ 0.

Step 1. Symbolic calculus. Because a ∈ S0, we know |a(x, ξ)| ≤ C uniformly for some
C. Let

M = M1 +M2, where M1 := 2 sup
R2n

|a(x, ξ)|2 + 1, (6.5)

and M2 shall be determined later, and define

b(x, ξ) :=
√
M1 − |a(x, ξ)|2.

It can be checked that b ∈ S0. We use σ(T ) to signify the symbol of T . Then by Theorems
5.3 & 5.5 we have

σ(T ∗b Tb) = |b|2 + S−1 = M1 − |a(x, ξ)|2 + S−1,

and also
σ(M1 − T ∗aTa) = M1 − σ(T ∗aTa) = M1 − (|a(x, ξ)|2 + S−1),

so
σ(T ∗b Tb) = σ(M1 − T ∗aTa) + S−1.

Hence
σ(M − T ∗aTa) = σ(M2 +M1 − T ∗aTa) = M2 + σ(T ∗b Tb) + S−1,
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which implies

M − T ∗aTa = M2 + T ∗b Tb −R, for some ΨDO R ∈ Ψ−1.

Therefore it is equivalent to prove

((M2 + T ∗b Tb −R)ϕ,ϕ) ≥ 0,

so we only need to prove

(Rϕ,ϕ) ≤M2‖ϕ‖2L2 . (6.6)

Step 2. To prove (6.6), we can do the following derivations:

(Rϕ,ϕ) ≤M2‖ϕ‖2L2 ⇐ |(Rϕ,ϕ)| ≤M2‖ϕ‖2L2

⇐ ‖Rϕ‖L2‖ϕ‖L2 ≤M2‖ϕ‖2L2

⇐ ‖Rϕ‖L2 ≤M2‖ϕ‖L2

⇐ (R∗Rϕ,ϕ) ≤M2
2 ‖ϕ‖2L2

⇐ |(R∗Rϕ,ϕ)| ≤M2
2 ‖ϕ‖2L2

⇐ ‖R∗Rϕ‖L2 ≤M2
2 ‖ϕ‖L2 .

We observe that

‖R∗Rϕ‖L2 ≤M2
2 ‖ϕ‖L2 ⇒ ‖Rϕ‖L2 ≤M2‖ϕ‖L2 . (6.7)

Step 3. Using (6.7) iteratively, we can obtain (R∗R)∗R∗R, ((R∗R)∗R∗R)∗(R∗R)∗R∗R,
etc, and each time the order of the corresponding ΨDO decreases by at least 1. We will end
up with a ΨDO of order less than −n in finite time. And by Lemma 6.11, that operator is
L2-bounded. Then we use (6.7) to bring the boundedness back to R, so we arrive at

‖Rϕ‖L2 ≤M2‖ϕ‖L2 , ∀ϕ ∈ S .

This gives (6.6). The proof is complete. �

As a corollary of Theorem 6.12, we have the following Hm boundedness for any T ∈ Ψm.

Corollary 6.13 (Hm boundedness). Assume T ∈ Ψm, then for any s ∈ R, the mapping
T : Hs+m(Rn)→ Hs(Rn) is bounded.

Proof. Denote J := (I −∆)1/2. Because T ∈ Ψm, we have JsTJ−s−m ∈ Ψ0. Hence
for any ϕ ∈ S (Rn) we have

‖Tϕ‖Hs = ‖JsTϕ‖L2 = ‖JsTJ−s−mJs+mϕ‖L2

≤ C‖Js+mϕ‖L2 = C‖ϕ‖Hs+m .

By a density argument we can extend the result to any ϕ ∈ Hs+m. The proof is done. �

Theorem 6.12 can be generalized to a more general case. The L2-boundedness results
are given in [Hör71, CV71, CV72]. Then A. Calderón and R. Vaillancourt generalized
their own result [CV71] in [CV72]. We comment that [Hwa87] gives an elementary proof
of the results in [CV72]. Here we restate the main results in [CV71, CV72] as follows.
Recall the symbol space Smρ,δ defined in Definition 2.4.

Theorem 6.14 (Calderón-Vaillancourt Theorem [CV71]). Let a ∈ S0
0,0(Rnx × Rnξ ;C),

then the ΨDO Ta is bounded in L2(Rn), and there exist constants C, N such that

∀ϕ ∈ L2(Rn), ‖Taϕ‖L2 ≤ C max
|α+β|≤N

‖∂αx ∂
β
ξ a‖L∞‖ϕ‖L2 . (6.8)
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Theorem 6.15 (Generalized Calderón-Vaillancourt Theorem [CV72]). Let a ∈ C∞(Rnx×
Rny ×Rnξ ;C), 0 ≤ ρ ≤ δj < 1 (j = 1, 2) and M/n ≥ 1

2(δ1 + δ2)− ρ. If there exists a constant

C such that ∀(x, y, ξ) ∈ Rnx × Rny × Rnξ ,

|∂α1
x ∂βξ a(x, y, ξ)| ≤ C〈ξ〉−M+δ1|α1|−ρ|β|, |∂α2

y ∂βξ a(x, y, ξ)| ≤ C〈ξ〉−M+δ2|α2|−ρ|β|

holds for all 0 ≤ |β| ≤ 2dn/2e + 2 and 0 ≤ |αj | ≤ 2mj (j = 1, 2) with mj being the least
integer satisfying mj(1− δj) ≥ 5n/4, then the linear operator Ta defined as

Taϕ(x) := (2π)−n
∫∫

Rn×Rn
ei(x−y)·ξa(x, y, ξ)ϕ(y) dy dξ

is bounded from L2(Rn) to L2(Rn) and ‖Ta‖L2→L2 ≤ Cδ1,δ2,nC for some constant Cδ1,δ2,n.

For simplicity, we summarize a easy-to-use L2-boundedness result as follows,

a ∈ S0
0,0 ⇒ ‖Ta‖L2→L2 <∞.

For the Lp-boundedness (1 < p < +∞) result, readers may refer to [CM78] (in French)
and [HL94].

6.3. G̊arding’s inequalities

We use notation <f to signify the real-valued part of any object f . Recall the Sobolev
spaces Hs,p(Rn) defined in Definition 2.14, and the corresponding Sobolev norms ‖·‖Hm,p

and ‖·‖Hm . We denote Jm := (I − ∆)m/2 and J := J1, namely, Jm takes 〈ξ〉m as its
symbol. It can be checked that Jm ∈ Ψm, Jm1Jm2 = Jm1+m2 , J is self-adjoint, and J0 is
the identity operator.

6.3.1. G̊arding’s Inequality.

Definition 6.16 (Strongly elliptic). Let m ∈ R. A symbol a is said to be strongly
elliptic of order 2m, if a ∈ S2m and if there exist fixed positive constants C, R such that

<a(x, ξ) ≥ C〈ξ〉2m, ∀ |ξ| ≥ R,

holds.

Similar to Lemma 6.5, there is an equivalent definition for the strong ellipticity of a
symbol.

Lemma 6.17. Assume m ∈ R and a ∈ S2m. The strong ellipticity condition for a is
equivalent to the fact that there exist two positive constants C and D such that

<a(x, ξ) ≥ C〈ξ〉2m −D〈ξ〉2m−1, ∀x, ξ ∈ Rn. (6.9)

Proof. Assume a ∈ S2m is strongly elliptic, then there are constants C, R > 0 such
that

<a(x, ξ)/〈ξ〉2m ≥ C, ∀|ξ| ≥ R,
so for any positive constant D we have

<a(x, ξ)/〈ξ〉2m ≥ C −D〈ξ〉−1, (6.10)

for ∀|ξ| ≥ R. Also, because a is a symbol of order 2m, for some M > 0 we have,

|<a(x, ξ)|/〈ξ〉2m ≤ |a(x, ξ)|/〈ξ〉2m ≤M ⇒ <a(x, ξ)/〈ξ〉2m ≥ −M, ∀ξ ∈ Rn.
We set D to be large enough such that

−M ≥ sup
|ξ|≤R

(C −D〈ξ〉−1), e.g. D := (C +M)〈R〉,
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then (6.10) holds for both |ξ| ≥ R and |ξ| ≤ R. This gives (6.9).
On the other hand, from (6.9) it is easy to see a is strongly elliptic. �

We are ready for the G̊arding’s Inequality.

Theorem 6.18 (G̊arding’s inequality). Assume m ∈ R and the symbol a ∈ S2m is
strongly elliptic. Then we can find a positive constant C and a positive constant Cs for
every reals numbers s ≥ 1

2 such that

<(Taϕ,ϕ) ≥ C‖ϕ‖2Hm − Cs‖ϕ‖2Hm−s , ∀ϕ ∈ S (Rn). (6.11)

Remark 6.1. When a(x, ξ) = 〈ξ〉2m, then a is strongly elliptic and

<(Taϕ,ϕ) = <(J2mϕ,ϕ) = <(Jmϕ, Jmϕ) = ‖ϕ‖2Hm ,

which implies (6.11). Theorem 6.18 implies that even if a symbol is not of the form 〈ξ〉2m
but is only strongly elliptic of order 2m, then Ta still possesses some positiveness.

Proof of Theorem 6.18. Let’s denote the symbol of T ∗a as a∗, then it can be checked
that

<(Taϕ,ϕ) = (T 1
2

(a+a∗)ϕ,ϕ).

Step 1. When m = 0. Because a is strongly elliptic and m = 0, by Lemma 6.17 and
Theorem 5.5 we have

1

2
(a+ a∗) = <a+ r ≥ C −D〈ξ〉−1 + r = C − r,

where r is a generic symbol in S−1. This makes it legal to define a symbol1 b ∈ S0 by

b(x, ξ) :=
(1

2
(a+ a∗)− C + r

)1/2
. (6.12)

Note that b is real-valued. Then by Theorems 5.3 and 5.5 we have (symbolic calculus)

b∗#b = (b+ S−1)b+ S−1 = b2 + S−1 =
1

2
(a+ a∗)− C + r + S−1,

so
1

2
(a+ a∗)− C = b∗#b+ r,

where r is a generic symbol in S−1. Therefore,

<(Taϕ,ϕ) = (T 1
2

(a+a∗)ϕ,ϕ) = (T ∗b Tbϕ,ϕ) +
C

2
‖ϕ‖2L2 + (Rϕ,ϕ)

= ‖Tbϕ‖2L2 +
C

2
‖ϕ‖2L2 + (Rϕ,ϕ) ≥ C

2
‖ϕ‖2L2 + (Rϕ,ϕ), (6.13)

for some R ∈ Ψ−1. We have

|(Rϕ,ϕ)| = |(RJ1/2J−1/2ϕ, J1/2J−1/2ϕ)| = |(J1/2RJ1/2(J−1/2ϕ), J−1/2ϕ)|

≤ ‖J1/2RJ1/2(J−1/2ϕ)‖L2‖ϕ‖H−1/2 ≤ C ′‖J−1/2ϕ‖L2‖ϕ‖H−1/2 (6.14)

= C ′‖ϕ‖2
H−1/2 . (6.15)

Note that in (6.14) we used the facts J1/2RJ1/2 ∈ Ψ0 and operators in Ψ0 are L2-bounded.
Combining (6.15) with (6.13) we arrive at

<(Taϕ,ϕ) ≥ C

2
‖ϕ‖2L2 − C ′‖ϕ‖2H−1/2 . (6.16)

1See Exercise 6.3.
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Step 2. When m 6= 0. Let Ta′ = J−mTaJ
−m for certain a′ ∈ S0. Then it can checked

that there exist C,D > 0 so that

<a′(x, ξ) ≥ C −D〈ξ〉−1, ∀x, ξ ∈ Rn. (6.17)

Hence according to Lemma 6.17, a′ is strongly elliptic, so by using the result in Step 1 we
can have

<(Taϕ,ϕ) = <(JmTa′J
mϕ,ϕ) = <(Ta′J

mϕ, Jmϕ)

≥ C

2
‖Jmϕ‖2L2 − C ′‖Jmϕ‖2H−1/2

=
C

2
‖ϕ‖2Hm − C ′‖ϕ‖2Hm−1/2 . (6.18)

Step 3. From Theorem 2.17 we have

‖ϕ‖2
Hm−1/2 ≤

1

D1/2
‖ϕ‖2Hm +Ds−1/2‖ϕ‖2Hm−s ,

for any D > 0. Set D to be small enough and substitute the inequality above into (6.16)
and (6.18), we arrive at the conclusion. �

G̊arding’s Inequality is used for giving the existence and uniqueness of the following
type equation:

(Ta + λI)u = f.

Let m ≥ 1/2 and s = m, and assume a ∈ S2m is strongly elliptic symbol, then

C‖ϕ‖2Hm − λ0‖ϕ‖2L2 ≤ <(Taϕ,ϕ), ∀ϕ ∈ S (Rn)

for some constant λ0 > 0, then for all λ > λ0, we can conclude

C‖ϕ‖2L2 ≤ C‖ϕ‖2Hm ≤ <((Ta + λ)ϕ,ϕ) = <(ϕ, (T ∗a + λ)ϕ) ≤ ‖ϕ‖L2‖(T ∗a + λ)ϕ‖L2 ,

which leads to a coercive condition:

C‖ϕ‖L2 ≤ ‖(T ∗a + λ)ϕ‖L2 .

Combining this with the Lax-Milgram theorem we can conclude that:

Corollary 6.19. Assume m ≥ 1/2 and a ∈ S2m is strongly elliptic. There exists a
constant λ0 such that when any λ > λ0, for any f ∈ L2(Rn) there exists a unique weak
solution u ∈ L2(Rn) satisfying the equation

(Ta + λ)u = f.

6.3.2. Sharp G̊arding’s Inequality. In the proof of Theorem 6.18 later on, we see
that having a strictly positive lower bound for <a is critical, and the method in that proof
will fail if the lower bound reduces to zero. However, when <a ≥ 0, one can still obtain
some lower bound of <(Taϕ,ϕ) and that result is called sharp G̊ading’s inequality.

Theorem 6.20 (Sharp G̊arding’s Inequality). For a symbol a ∈ S2m satisfying

<a(x, ξ) ≥ 0, ∀ |ξ| ≥ R, (6.19)

we can find a positive constant C such that

<(Taϕ,ϕ) ≥ −C‖ϕ‖2
Hm−1/2 , ∀ϕ ∈ S (Rn).
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The prove (6.20), we introduce the wave packet transform. The wave packet transform

W : L2(Rn)→ L2(Rn × Rn) is defined as (see [Che17, Theorem 4.2.3])

Wu(z, ξ) := cn〈ξ〉n/4(ei(·)·ξ−〈ξ〉|·|
2 ∗z u), (6.20)

and its conjugate in terms of the L2-inner product is given by,

W ∗F (x) = cn

∫
〈ξ〉n/4(ei(·)·ξ−〈ξ〉|·|

2 ∗x F (·, ξ)) dξ, (6.21)

where the constant cn = 2−n/4π−3n/4 and (f ∗x g) signifies
∫
f(x− y)g(y) dy.

Lemma 6.21. The wave packet transform W defined in (6.20) is a bounded linear oper-
ator.

Proof. The linearity is obvious.
To show the boundedness, we compute ‖Wu‖2L2(Rn×Rn),

‖Wu‖2L2(Rn×Rn) '
∫∫
|〈ξ〉n/4(ei(·)·ξ−〈ξ〉|·|

2 ∗z u)|2 dz dξ

=

∫
〈ξ〉n/2

∫
|F{(ei(·)·ξ−〈ξ〉|·|2}(η)|2 · |û(η)|2 dη dξ (Plancherel theorem)

=

∫ ( ∫
〈ξ〉n/2|F{(ei(·)·ξ−〈ξ〉|·|2}(η)|2 dξ

)
· |û(η)|2 dη

'
∫ ( ∫

〈ξ〉n/2|〈ξ〉−n/2e−〈ξ〉−1|η−ξ|2/4|2 dξ
)
· |û(η)|2 dη

=

∫ ( ∫
〈ξ〉−n/2e−〈ξ〉−1|η−ξ|2/2 dξ

)
· |û(η)|2 dη

≤
∫ ( ∫

e−|η−ξ|
2/2 dξ

)
· |û(η)|2 dη .

∫
|û(η)|2 dη

= ‖u‖2L2(Rn).

The proof is complete. �

Proof of Theorem 6.20. similar to Proof of Theorem 6.18, the general cases w.r.t. m
stem from the special case where m = 1/2. Let’s assume m = 1/2 for the time being and
try to show <(Taϕ,ϕ) & −‖ϕ‖2−1/2,2.

The condition (6.19) can be replaced by “<a(x, ξ) ≥ 0, ∀ξ ∈ Rn”, and this is because
we can fix some χ ∈ C∞c (Rn;Rn) (thus χ ∈ S−∞) satisfying χ(ξ) ≥ sup(x,ξ)<a(x, ξ) when

{|ξ| ≤ R}, and then we can obtain <a(x, ξ) + χ(ξ) ≥ 0, ∀ξ ∈ Rn. Note that <(χϕ, ϕ) &
−‖ϕ‖2L2 because χ ∈ S−∞. Therefore, from now on we assume <a(x, ξ) ≥ 0, ∀ξ ∈ Rn.

Denote as b(x, ξ) the symbol of W ∗<aW . The operator Tb := W ∗<aW is defined by
Tbϕ(x) = W ∗(<a ·Wϕ)(x) for ϕ ∈ S (Rn). We have

Tbϕ(x) '
∫
〈ξ〉n/4

∫
ei(x−y)·ξ−〈ξ〉|x−y|2<a(y, ξ)Wϕ(y, ξ) dy dξ

'
∫
〈ξ〉n/4

∫
ei(x−y)·ξ−〈ξ〉|x−y|2<a(y, ξ)〈ξ〉n/4

∫
ei(y−z)·ξ−〈ξ〉|y−z|

2
ϕ(z) dz dy dξ

'
∫∫

ei(x−z)·ξ(

∫
e−〈ξ〉(|y−z|

2+|x−y|2)〈ξ〉n/2<a(y, ξ) dy)ϕ(z) dz dξ

=

∫∫
ei(x−z)·ξã(x, z, ξ)ϕ(z) dz dξ, (6.22)
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where ã(x, z, ξ) := 〈ξ〉n/2
∫
e−〈ξ〉(|y−z|

2+|x−y|2)<a(y, ξ) dy. It can be checked that ã ∈ S1
1,1/2.

By [Che17, Theorem 2.4.1], we have the asymptotic expansion

b(x, ξ) = ã(x, x, ξ) +
n∑
j=1

ej(x, ξ) + r, r ∈ S0
1,1/2, (6.23)

where ej(x, ξ) = ∂zjDξj ã(x, z, ξ)|z=x. Note that ej belongs to S
1/2
1,1/2, not S0

1,1/2, and this

is why we expand ã to the second order. The symbols ej is purely imaginary because ã is
real.

For ã(x, x, ξ), we have

ã(x, x, ξ) = 〈ξ〉n/2<
∫
e−2〈ξ〉|x−y|2a(y, ξ) dy

= 〈ξ〉n/2<
∫
e−2〈ξ〉|x−y|2[a(x, ξ) +

∑
j

(y − x)(j)∂xja(x, ξ)

+
∑
|α|=2

(y − x)α∂αx a(ρx+ (1− ρ)y, ξ)/2
]

dy

' <a(x, ξ) + 〈ξ〉n/2<∂xja(x, ξ)
∑
j

∫
e−2〈ξ〉|x−y|2(y − x)(j) dy

+ 〈ξ〉n/2
∑
|α|=2

<
∫
e−2〈ξ〉|x−y|2(y − x)α · ∂αx a(ρx+ (1− ρ)y, ξ)/2 dy

= <a(x, ξ) + 〈ξ〉n/2
∑
|α|=2

<
∫
e−2〈ξ〉|x−y|2(y − x)α · ∂αx a(ρx+ (1− ρ)y, ξ)/2 dy

= <a(x, ξ) + r′, r′ ∈ S0. (6.24)

The last equal sign in (6.24) is due to the following computation,

|〈ξ〉n/2
∫
e−2〈ξ〉|x−y|2(y − x)α · ∂αx a(ρx+ (1− ρ)y, ξ)/2 dy|

. 〈ξ〉n/2
∫
e−2〈ξ〉|x−y|2 |(y − x)α| · 〈ξ〉 dy

=

∫
e−2|〈ξ〉1/2y|2 |(〈ξ〉1/2y)α|d(〈ξ〉1/2y)

=

∫
e−2|y|2 |yα|dy ≤ C

for some positive constant C.
Combining (6.23) and (6.24), we obtain

b(x, ξ) = <a(x, ξ) +

n∑
j=1

ej(x, ξ) + r, ej ∈ S1/2
1,1/2, r ∈ S0

1,1/2, (6.25)

and thus

(a+ a∗)/2 = b(x, ξ)−
n∑
j=1

ej(x, ξ)− r, r ∈ S0
1,1/2. (6.26)

The r in (6.25) and (6.26) are different from each other and are also different from the r in
(6.23). Now we have

<(Taϕ,ϕ) = [(Taϕ,ϕ) + (Taϕ,ϕ)]/2 = [(Taϕ,ϕ) + (ϕ, Taϕ)]/2 = (T(a+a∗)/2ϕ,ϕ)
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= (Tbϕ,ϕ)− (Tejϕ,ϕ)− (Trϕ,ϕ)

= (<a ·Wϕ,Wϕ)− (Tejϕ,ϕ)− (Trϕ,ϕ)

≥ −(Tejϕ,ϕ)− (Trϕ,ϕ) (because <a ≥ 0)

= −<(Tejϕ,ϕ)−<(Trϕ,ϕ) = −(T(ej+e∗j )/2ϕ,ϕ)−<(Trϕ,ϕ)

≥ −(T(ej+e∗j )/2ϕ,ϕ)− C‖ϕ‖2L2 , (6.27)

for some positive constant C. The L2-boundedness of operators whose symbol come from
S0

1,1/2 can be proved in a similar manner as in the proof of that of S0, cf. [Che17, Theorem

4.1.1] and [AG07, Theorem 5.1].

Recall that ej ∈ S1/2
1,1/2 and ej is purely imaginary, thus the principal symbol of T(ej+e∗j )/2

equals to zero and hence (ej + e∗j )/2 ∈ S
1/2
0,1/2. Therefore,

(T(ej+e∗j )/2ϕ,ϕ) ≤ C‖ϕ‖2L2 (6.28)

for some positive constant C.
Combining (6.27) and (6.28), we arrive at the conclusion for the case m = 1/2. Based

on the result regarding m = 1/2, the proof of general cases become trivial. �

Exercise

Exercise 6.1. Prove Lemma 6.3.

Exercise 6.2. Assume m ∈ R and a ∈ Sm and a is elliptic. Fix a cutoff function
χ ∈ C∞(Rn) such that χ(ξ) = R when |ξ| ≤ 1 and χ(ξ) = 0 when |ξ| ≥ R+ 1, where the R
comes from the definition of the ellipticity of a. Define r0(x, ξ) := (1−χ(ξ))/a(x, ξ). Prove
that r0 ∈ S−m.

Exercise 6.3. Prove the b(x, ξ) defined in (6.12) is indeed a symbol and is of order 0.
Hint: use [AG07, Lemma 2.1.1] or [Won14, Lemma 17.2].

Exercise 6.4. Prove (6.17) is true.

Exercise 6.5. Assume the symbols a and b are elliptic. Show that TaTb and T ∗a are
also elliptic. Hint: utilize Lemma 6.5.



CHAPTER 7

Semi-classical ΨDOs and its symbolic calculus

Semiclassical analysis shares lots of features with ΨDO theory, while also keeping some
of its own specialties. One of the application of semiclassical analysis is Carleman estimates.

7.1. Semi-classical ΨDOs

7.1.1. Symbol classes.

Definition 7.1 (Order function). A measurable function m : R2n → R+ is call an order
function if there exist constants C > 0 and N ∈ N such that

m(z1 − z2) ≤ C〈z1〉Nm(z2), ∀z1, z2 ∈ R2n.

The integer N is called the order of m.

Typically, we shall set z = (x, ξ) with x, ξ ∈ Rn. For any a, b ∈ R, m(x, ξ) = 〈x〉a〈ξ〉b
are order functions with N = 2 max{|a|, |b|}. Specifically, 〈ξ〉N is an order function of order
N , and note that this order function is independent of x. If m1, m2 are order functions
of order N1 and N2 respectively, then the product m1m2 is also an order function of order
N1 +N2. This can be seen from the following computation:

(m1m2)(z1 − z2) = m1(z1 − z2) ·m2(z1 − z2) ≤ C〈z1〉N1m1(z2) · 〈z1〉N2m2(z2)

= C〈z1〉N1+N2(m1m2)(z2).

Definition 7.2 (Semiclassical symbol class). Let h ∈ (0, 1), δ ∈ [0, 1
2 ] and m be an

order function with order N . For a(·;h) ∈ C∞(R2n), we say a ∈ Sδ(m) with order N if

|∂αz a(z;h)| ≤ Cαh−δ|α|m(z), ∀z ∈ R2n.

Define a family of seminorms

|a(·;h)|Sδ(m),α = |a|α := sup
z∈R2n

|∂αz a(z;h)|
h−δ|α|m(z)

,

and so the semiclassical symbol class Sδ(m) is given by

Sδ(m) := {a(z;h) ∈ C∞ ; ∀ multi-index α, |a|α < +∞}.
We abbreviate Sδ(1) as Sδ and S0(1) as S.

Note that in contrast to the Kohn-Nirenberg symbol (cf. Definitions 2.1 & 2.4), the
semiclassical symbol doesn’t gain decay w.r.t. its arguments after being differentiated.

We write a(·;h) = OSδ(m)(f(h)) if for every multi-index α, there exist h0 and a such
that |a|α ≤ Cαf(h) holds for all h ∈ (0, h0), namely,

a(·;h) = OSδ(m)(f(h)) ⇔ |∂αa(·;h)| . f(h)h−δ|α|m.

It can be checked that ∀a ∈ Sδ(m), we have f(h)a = OSδ(m)(f(h)). For Sδ(m) and aj ∈
Sδ(m), we write a ∼

∑
j h

jaj if a−
∑N

j=0 h
jaj = OSδ(m)(h

N+1).

61
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Lemma 7.3. Assume 0 ≤ δ ≤ 1
2 and a ∈ Sδ(m) and a1 ∈ Sδ(m1), a2 ∈ Sδ(m2). Then

hDja ∈ Sδ(m) and a1a2 ∈ Sδ(m1m2).

Proof. We can compute

|∂α(hDja)| = h|∂α+eja| ≤ Cαhh−δ(|α+ej |)m = Cαhh
−δ|α|−δm = Cαh

1−δh−δ|α|m

≤ h0Cαh
−δ|α|m.

Hence hDja ∈ Sδ(m). We omit the rest of the proof. �

Definition 7.4 (Asymptotics). For symbol a, aj ∈ Sδ(m) (j = 0, 1, · · · ), we write

a ∼
∑

j h
(1−2δ)jaj in Sδ(m) if a −

∑N
j=0 h

(1−2δ)jaj = OSδ(m)(h
(1−2δ)(N+1)) holds for every

n ∈ N, namely,

a ∼
∑
j

h(1−2δ)jaj in Sδ(m) ⇔ a =

N∑
j=0

h(1−2δ)jaj + h(1−2δ)(N+1)Sδ(m).

Here h(1−2δ)(N+1)Sδ(m) means h(1−2δ)(N+1)r for some r ∈ Sδ(m). The a0 is called the
principal symbol of a.

The asymptotics is more about h than the Kohn-Nirenberg symbol which is more about
ξ. To avoid confusion, we would like to comment in advance that even though the definition
of asymptotics semiclassical symbol is in the form a ∼ a0 + h1−2δa1 + h(1−2δ)2a2 + · · · , but
later we may see a be expressed as b0 + hb1 + h2b2 + · · · , e.g. in (7.15). The difference is
that it is h2δjbj rather than bj itself that is in Sδ(m).

Theorem 7.5. For ∀aj ∈ Sδ(m) (j = 0, 1, · · · ), there always exists a ∈ Sδ(m) such that

a ∼
∑

j h
(1−2δ)jaj.

Proof. We choose a cutoff function χ ∈ C∞c (R) satisfying χ ≡ 1 in (−1, 1), 0 ≤ χ ≤ 1,
χ is decreasing in the interval (1, 2) and suppχ ⊂ (−2, 2). Note that we define χ on the
whole real axis but will only use its definition on the positive real axis.

Step 1. Define

a :=
∑
j≥0

χ(λjh)h(1−2δ)jaj

for some λj which shall be determined. Our scheme is to choose λj > 0 properly (grows fast
enough) such that a will be well-defined at each point and satisfies Definition 7.4. From the
construction of χ it can be checked that

∀h ≥ 0, ∀k ≥ 0, χ(h)h(1−2δ)k ≤ 2(1−2δ)k. (7.1)

Hence,

|a| = |
∑
j≥0

χ(λjh)h(1−2δ)jaj | = |
∑
j≥0

χ(λjh)(λjh)(1−2δ)j(λjh)−(1−2δ)jh(1−2δ)jaj |

≤
∑
j≥0

(2/λj)
(1−2δ)j |aj |,

and similarly,

|∂αa| ≤
∑
j≥0

(2/λj)
(1−2δ)j |∂αaj | ≤

∑
j≥0

Cj,α(2/λj)
(1−2δ)j · h−δ|α|m.

Step 2. For a specific α, we only need to choose {λj,α}j≥0 grow fast enough such that∑
j≥0

Cj,α(2/λj,α)(1−2δ)j
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is finite, and one example is λj,α = 3C
1/[(1−2δ)j]
j,α . Then using diagonal arguments we could

choose a suitable set {λj} from {λj,α}j≥0. However, we want {λj} to grow even more
faster for our later use; particularly, to guarantee (7.5) is finite. To that end, for each fixed
multi-index α and non-negative integer M , we first choose {λj,α,M}j≥0 to grpw fast enough
w.r.t. j such that 

∑
j≥0

Cj+M,α(2/λj,α,M )(1−2δ)j < +∞,

λj,α,M ′ ≥ λj,α,M when M ′ ≥M,

λj,α′,M ≥ λj,α,M when α′ ≥ α,

(7.2)

then we choose

λj := λj,(j,j,··· ,j),j

where (j, j, · · · , j) stands for the multi-index of which the value of every component is j. By

doing so, we are guaranteed that the sum
∑

j≥0Cj+M,α(2/λj)
(1−2δ)j is finite for every α and

M . Back to the estimate of |∂αa|, we are guaranteed that a is well-defined and a ∈ Sδ(m).

It remains to show a ∼
∑

j h
(1−2δ)jaj in Sδ(m).

Step 3. To analyze a−
∑N

j=0 h
jaj , we use another trick similar to (7.1),

∀h ≥ 0, ∀k ≥ 0, |χ(h)− 1|h−k ≤ 1. (7.3)

The verification of (7.3) is left as an exercise. By (7.1) and (7.3), for h ∈ (0, h0) where
h0 < 1 we have

|∂α(a−
N∑
j=0

h(1−2δ)jaj)|

≤
N∑
j=0

|χ(λjh)− 1|h(1−2δ)j |∂αaj |+
∑

j≥N+1

χ(λjh)h(1−2δ)j |∂αaj |

≤
N∑
j=0

|χ(λjh)− 1|(λjh)−(1−2δ)(N+1−j) · (λjh)(1−2δ)(N+1−j)h(1−2δ)j |∂αaj |

+
∑
j≥0

χ(λjh)(
λjh

2
)(1−2δ)j · Cj+N+1,α(

2

λjh
)(1−2δ)jh(1−2δ)(j+N+1)h−δ|α|m (7.4)

≤
[ N∑
j=0

λ
(1−2δ)(N+1−j)
j Cj,α +

∑
j≥0

Cj+N+1,α(
2

λj
)(1−2δ)j

]
h(1−2δ)(N+1)h−δ|α|m (7.5)

≤C̃N,α,h0h(1−2δ)(N+1)h−δ|α|m.

Here in (7.4) we used χ(λjh) ≤ χ(λj−1h). Hence,

a−
N∑
j=0

h(1−2δ)jaj = OSδ(m)(h
(1−2δ)(N+1)).

The proof is complete. �

7.1.2. Semiclassical pseudodifferential operators. Just as Kohn-Nirenberg sym-
bols, every semiclassical symbol produces an operator, and is semiclassical situation, these
operators are also described as quantizations of the corresponding symbols.
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Definition 7.6 (Quantization). We quantize the symbol a(x, ξ) by means of (7.8) for
∀t ∈ [0, 1]. And we also denote Standard quantization and Weyl quantization as in (7.6)-
(7.7),

(Standard quant.:) a(x, hD)u := (2πh)−n
∫
ei(x−y)·ξ/ha(x, ξ)u(y) dy dξ, (7.6)

(Weyl quant.:) aw(x, hD)u := (2πh)−n
∫
ei(x−y)·ξ/ha(

x+ y

2
, ξ)u(y) dy dξ, (7.7)

(General quant.:) at(x, hD)u := (2πh)−n
∫
ei(x−y)·ξ/ha(tx+ (1− t)y, ξ)u(y) dy dξ.

(7.8)

These operators defined above are called semiclassical pseudodifferential operators (abbre-
viated as SΨDOs). We denote the set of SΨDO with symbols coming from Sδ(m) as
Oph(Sδ(m)).

According to Definition 7.6 we know that aw(x, hD) = a 1
2
(x, hD) and a(x, hD) =

a1(x, hD). It is trivial to see

a(x, ξ) = f(x)ξj ⇔ a(x, hD) = f(x)hDj .

We introduce the h-dependent Fourier transform.

Definition 7.7. The semiclassical Fourier transform Fh and its inverse F−1
h are defined

as

Fhu(ξ) := (2πh)−n/2
∫
Rn
e−ix·ξ/hu(x) dx, (7.9)

F−1
h u(x) := (2πh)−n/2

∫
Rn
eix·ξ/hu(ξ) dξ. (7.10)

It can be checked that

a(x, hD)u := F−1
h {a(x, ·)Fhu(·)}. (7.11)

Formula (7.11) is one of the reason why the semiclassical Fourier transform shall defined as
in Definition 7.7.

Lemma 7.8. Assume δ ∈ R and a ∈ Sδ(m). Then for ∀t ∈ [0, 1], we have that the
operator at satisfies at(x, hD) : S (Rn) → S (Rn) and at(x, hD) : S ′(Rn) → S ′(Rn), and
the mappings are bounded with norm depending on δ and h, but uniformly on t.

Proof. Let ϕ ∈ S (Rn). We have

at(x, hD)ϕ(x) = (2πh)−n
∫∫

ei(x−y)·ξ/ha(tx+ (1− t)y, ξ;h)ϕ(y) dy dξ.

The integrability of y is not a problem because ϕ(y) is rapidly decay. For ξ, we should use

integration by parts to gain enough decay on ξ. Notice that
1−ξ·hDy
〈ξ〉2 (ei(x−y)·ξ/h) = ei(x−y)·ξ/h,

we denote L1 =
1−ξ·hDy
〈ξ〉2 , then act Ln+1

1 on ei(x−y)·ξ/h and use integration by parts, we will

end up in a integrand of order 〈ξ〉−n−1 on ξ and rapidly decay on y, thus integrable. Hence
we proved that at(x, hD) : S (Rn) → L∞(Rn) for a ∈ Sδ(m). Adopt similar arguments
on xα∂βat(x, hD), we can obtain xα∂βat(x, hD) : S (Rn) → L∞(Rn) for ∀α, β. Therefore
at(x, hD) : S (Rn)→ S (Rn). And the continuity of the operator can also be seen from the
arguments above.

The second result holds due to duality arguments. �
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Lemma 7.9. If symbol a is independent of ξ, i.e. a(x, ξ) = a(x), then

at(x, hD)u(x) = a(x)u(x), ∀t ∈ [0, 1].

Proof. It is enough to prove for u ∈ S . When t = 1, we have

a1(x, hD)u(x) = (2πh)−n
∫∫

ei(x−y)·ξ/ha(x, ξ)u(y) dy dξ

= (2πh)−n
∫∫

ei(x−y)·ξ/ha(x)u(y) dy dξ

= a(x)u(x).

We have

∂t
(
at(x, hD)u(x)

)
= (2πh)−n

∫∫
ei(x−y)·ξ/h∂t

(
a(tx+ (1− t)y)

)
u(y) dy dξ

= (2πh)−n
∫∫

ei(x−y)·ξ/h(x− y) · ∇a(tx+ (1− t)y)u(y) dy dξ

' (2πh)−n
∫∫
∇ξei(x−y)·ξ/h · ∇a(tx+ (1− t)y)u(y) dy dξ

' (2πh)−n
∫∫

ei(x−y)·ξ/hdivξ
(
∇a(tx+ (1− t)y)u(y)

)
dy dξ

= 0.

We arrive at the conclusion. �

From Lemma 7.9 and (7.8) we know that if a(x, ξ) is either independent of ξ or inde-
pendent of x, the quantized operator at(x, hD) will be independent of t. Hence, for fixed
x∗, ξ∗ ∈ Rn, and denote l(x, ξ) := x∗ · x+ ξ∗ · ξ, then lt(x, hD) is independent of t, i.e.,

lt(x, hD) = x∗ · x+ ξ∗ · hD. (7.12)

7.2. Composition of the standard quantizations

For a non-degenerate, symmetric, real-valued n × n matrix Q, the quantization of the
exponential of quadratic forms is defined as the standard quantization (cf. (7.6)),

e
i
2h
〈QhD,hD〉ϕ(x) = (2πh)−n

∫∫
Rn×Rn

ei(x−y)·ξ/he
i
2h
〈Qξ,ξ〉ϕ(y) dy dξ. (7.13)

Readers may compare (7.13) with (7.31). The following lemma shows how to express

e
i
2h
〈QhD,hD〉. The e

i
2h
〈QhD,hD〉 can be expanded by using stationary phase lemmas.

Lemma 7.10. Assume Q is a non-degenerate, symmetric, real-valued n × n matrix.

We have e
i
2h
〈QhD,hD〉 : S → S continuously. And when 0 ≤ δ ≤ 1

2 , we have that

e
i
2h
〈QhD,hD〉 : Sδ(m)→ Sδ(m), and the expression is

e
i
2h
〈QhD,hD〉a(x) =

ei
π
4

sgnQ

|detQ|1/2(2πh)n/2

∫
Rn
e
−i
2h
〈Q−1y,y〉a(x+ y) dy. (7.14)

The integral (7.14) is defined in oscillatory sense. Moreover, when 0 ≤ δ < 1
2 , for a ∈ Sδ(m)

we have the asymptotics

e
i
2h
〈QhD,hD〉a =

N∑
j=0

(ih)j

j!

(〈QD,D〉
2

)j
a+ h(1−2δ)(N+1)Sδ(m). (7.15)
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Proof. For a non-degenerate, symmetric, real-valued n × n matrix Q we have (see
[Ma20c])

F{e
i
2
〈Qx,x〉}(ξ) =

ei
π
4

sgnQ

|detQ|1/2
e−

i
2
〈Q−1ξ,ξ〉. (7.16)

For any measurable function a ∈ S , as long as the right-hand-side of (7.14) is defined,
by the definition (7.13) we have

e
i
2h
〈QhD,hD〉a(x) = (2πh)−n

∫∫
ei(x−y)·ξ/he

i
2h
〈Qξ,ξ〉a(y) dy dξ

= (2πh)−n/2
∫ [

(2πh)−n/2
∫
ei(x−y)·ξ/he

i
2h
〈Qξ,ξ〉 dξ

]
a(y) dy

= (2πh)−n/2
∫ [

(2π)−n/2
∫
e−i(y−x)/

√
h·ξe

i
2
〈Qξ,ξ〉 dξ

]
a(y) dy

= (2πh)−n/2
∫
F{e

i
2
〈Qξ,ξ〉}((y − x)/

√
h) · a(y) dy

= (2πh)−n/2
∫

ei
π
4

sgnQ

| detQ|1/2
e−

i
2h
〈Q−1(y−x),y−x〉a(y) dy by (7.16)

=
ei
π
4

sgnQ

|detQ|1/2(2πh)n/2

∫
e
i
h
〈−Q−1y,y〉/2a(x+ y) dy. (7.17)

We arrive at (7.14). From (7.17) and (4.8) it is easy to see that xα∂βe
i
2h
〈QhD,hD〉 : S → L∞

for ∀α, β, hence e
i
2h
〈QhD,hD〉 : S → S continuously.

Now we use Proposition 4.3 to estimate (7.17) and to confirm that e
i
2h
〈QhD,hD〉 indeed

maps Sδ(m) into itself. It is straightforward to check a satisfies the condition (4.9) with

CN,n,α = h−δ|α|. Denote the order of the symbol a as Ñ , and choose the N in Proposition

4.3 to be N ≥ Ñ/2− 1. From (7.17) and Proposition 4.3 we have

e
i
2h
〈QhD,hD〉a(x)

=
∑

0≤j≤N

hj

j!

(
〈(−Q−1)−1D,D〉

2i

)j
a(x) +O

(
hN+1 ×

∑
|α|≤n+2N+3

sup
y∈Rn

|∂αa(x+ y;h)|
〈y〉n+4N+5−|α|

)
=
∑

0≤j≤N

(ih)j

j!

(
〈QD,D〉

2

)j
a(x) +O

(
hN+1 ×

∑
|α|≤n+2N+3

sup
y∈Rn

h−δ|α|〈y〉Ñm(x)

〈y〉n+4N+5−|α|

)
=
∑

0≤j≤N

(ih)j

j!

(
〈QD,D〉

2

)j
a(x) +O

(
hN+1−δ(n+2N+3) sup

y∈Rn
〈y〉Ñ−2N−2m(x)

)
=
∑

0≤j≤N

(ih)j

j!

(
〈QD,D〉

2

)j
a(x) + h(1−2δ)(N+1)−δ(n+1)O

(
m(x)

)
. (7.18)

Now e
i
2h
〈QhD,hD〉 : Sδ(m) → Sδ(m) is justified by (7.18) and similar arguments also work

on ∂α(e
i
2h
〈QhD,hD〉a). It can be checked that hj〈QD,D〉ja = h(1−2δ)jSδ(m). Here f =

h(1−2δ)jSδ(m) means there exists a symbol g ∈ Sδ(m) such that f = h(1−2δ)jg. Hence,
these leading terms matched with the stipulation in Definition 7.4. From (7.18) it seems we
didn’t obtain the expansion because the remainder term may surpass these leading terms
due to the factor h−δ(n+1). However, when δ < 1/2, from (7.18) we see that the order of
the remainder term goes higher as N goes larger (while when δ = 1/2 this doesn’t happen),
and when we set N to be large enough, these leading terms can exposed themselves from
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the rest and will not be surpassed by the remainder. For example, if we want to expand
(7.18) up to N ′, we first choose N such that (1− 2δ)(N + 1)− δ(n+ 1) ≥ (1− 2δ)(N ′ + 1),
then (7.18) can be continued as

(∗) =
∑

0≤j≤N ′

(ih)j

j!

(
〈QD,D〉

2

)j
a(x) +

∑
N ′+1≤j≤N

(ih)j

j!

(
〈QD,D〉

2

)j
a(x)

+ h(1−2δ)(N+1)−δ(2n+1)O(m(x))

=
∑

0≤j≤N ′

(ih)j

j!

(
〈QD,D〉

2

)j
a(x) +

∑
N ′+1≤j≤N

hjh−2δjSδ(m) + h(1−2δ)(N ′+1)O(m(x))

=
∑

0≤j≤N ′

(ih)j

j!

(
〈QD,D〉

2

)j
a(x) + h(1−2δ)(N ′+1)O

(
m(x)

)
. (7.19)

Finally, by investigating ∂α(e
i
2h
〈QhD,hD〉a), the last term h(1−2δ)(N ′+1)O

(
m(x)

)
in (7.19)

will become OSδ(m)(h
(1−2δ)(N ′+1)), and the computations will be almost the same as above

so we leave it the readers. The proof is done. �

Next, we study compositions of standard quantizations a(x, hD) and b(x, hD). In these
quantizations, the symbols such as a(x, η) have 2n variables, and we assume a ∈ Sδ(m) for
certain order functions m which satisfy

m(x+ y, η + ξ) ≤ 〈(y, ξ)〉Nm(x, η).

For an specific example, in standard quantization the operator I − h2∆ has the symbol
a(x, ξ) = 〈ξ〉2, and the corresponding order function m(x, ξ) = 〈ξ〉2 of order 2.

Theorem 7.11 (Composition of standard quantizations). Let a(x, η) ∈ Sδ(m1) and
b(x, η) ∈ Sδ(m2). Denote

(a#b)(x, hD) = a(x, hD) ◦ b(x, hD),

then a#b ∈ Sδ(m1m2), and

a#b(x, η) = e
i
2h
〈QhD(y,ξ),hD(y,ξ)〉

(
a(x, η + ξ)b(x+ y, η)

)
|y=0, ξ=0, (7.20)

where Q =

(
0 In×n

In×n 0

)
. Moreover, when h→ 0+ we have the semiclassical asymptotics,

a#b(x, η) =
N∑
j=0

(ih)j

j!
(Dy ·Dξ)

j
(
a(x, η + ξ)b(x+ y, η)

)
|y=0,ξ=0 + h(1−2δ)(N+1)Sδ(m1m2)

=
∑
|α|≤N

(−ih)|α|

α!
∂αη a(x, η)∂αx b(x, η) + h(1−2δ)(N+1)Sδ(m1m2).

(7.21)

Remark 7.1. When either a(x, ξ) or b(x, ξ) is polynomial of ξ, the expansion (7.21)

will be finite, i.e. when N is large enough the remainders h(1−2δ)(N+1)Sδ(m1m2) will be
exactly zero, see also [Mar02, Remark 2.6.9]. This can be seen by directly working in the
stationary phase lemma.

Proof of Theorem 7.11. For a test function ϕ ∈ S (Rn), we have

(a#b)(x, hD)ϕ = (2πh)−2n

∫
ei(x−z)·η/h

( ∫
ei(x−y)·(ξ−η)/ha(x, ξ)b(y, η) dy dξ

)
ϕ(z) dz dη
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= (2πh)−2n

∫
ei(x−z)·η/h

( ∫
e−iy·ξ/ha(x, ξ + η)b(y + x, η) dy dξ

)
ϕ(z) dz dη

= (2πh)−n
∫
ei(x−z)·η/h · [· · · ] · ϕ(z) dz dη,

where

[· · · ] = (2πh)−n
∫
e
−i
2h
〈Q(y,ξ)T ,(y,ξ)T 〉cx,η((0, 0) + (y, ξ)) dy dξ,

with cx,η(y, ξ) := a(x, η + ξ)b(x + y, η), and Q =

(
0 I
I 0

)
. Note that Q−1 = Q, sgnQ = 0

and detQ = 1 or −1. Similar to the computations in (7.18), we can apply Proposition 4.3
to [· · · ]:

[· · · ]

=
∑

0≤j≤N

hj

j!

(
〈(−Q)−1D(y,ξ), D(y,ξ)〉

2i

)j (
cx,η(y, ξ)

)
|(y,ξ)=(0,0)

+ hN+1 ×O
( ∑
|α|≤2n+2N+3

sup
(y,ξ)∈R2n

|∂αy,ξ
(
cx,η(y, ξ)

)
|

〈(y, ξ)〉2n+4N+5−|α|

)
=
∑

0≤j≤N

(ih)j

j!

(〈QD(y,ξ), D(y,ξ)〉
2

)j (
a(x, η + ξ)b(x+ y, η)

)
|(y,ξ)=(0,0)

+ hN+1 ×O
( ∑
|α|≤2n+2N+3

sup
(y,ξ)∈R2n

h−δ|α|m1(x, η + ξ)m2(x+ y, η)

〈(y, ξ)〉2n+4N+5−|α|

)
=
∑

0≤j≤N

(ih)j

j!

(
Dy ·Dξ

)j(
a(x, η + ξ)b(x+ y, η)

)
|(y,ξ)=(0,0)

+ hN+1 ×O
(

sup
(y,ξ)∈R2n

h−δ(2n+2N+3)〈ξ〉N1m1(x, η)〈y〉N2m2(x, η)

〈(y, ξ)〉2N+2

)
=
∑

0≤j≤N

(ih)j

j!

(
Dy ·Dξ

)j(
a(x, η + ξ)b(x+ y, η)

)
|(y,ξ)=(0,0)

+ h(1−2δ)(N+1)−δ(2n+1) ×O
(

sup
(y,ξ)∈R2n

〈ξ〉N1〈y〉N2

〈ξ〉N+1〈y〉N+1
m1(x, η)m2(x, η)

)
.

By taking N to be larger than N1 and N2, we know sup(y,ξ)∈R2n
〈ξ〉N1 〈y〉N2

〈ξ〉N+1〈y〉N+1 ≤ 1, so

[· · · ] =
∑

0≤j≤N

(ih)j

j!

(
Dy ·Dξ

)j(
a(x, η + ξ)b(x+ y, η)

)
|(y,ξ)=(0,0)

+ h(1−2δ)(N+1)−δ(2n+1) ×O
(
m1(x, η)m2(x, η)

)
.

By (5.8), we can continue the computation,

[· · · ] =
∑
|α|≤N

(−ih)|α|

α!
∂αη a(x, η)∂αx b(x, η)

+ h(1−2δ)(N+1)−δ(2n+1) ×O
(
m1(x, η)m2(x, η)

)
.

By letting N to be large enough, we obtain (7.21). The proof is done. �
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Readers may compare Theorem 5.3 with (7.21). The asymptotics in Theorem 5.3 is
in terms of the decay of |ξ|, but the asymptotics in (7.21) is about the order of h. The
first two leading terms in Theorem 5.3 is ab − i∇ξa · ∇xb (no h), while that of (7.21) is
ab− ih∇ξa · ∇xb.

Corollary 7.12. The first two leading terms of a#b is ab− ih∇ξa · ∇xb. Assume

a ∈ Sδ(m1) and b ∈ Sδ(m2), then the symbol of the commutator [a(x, hD), b(x, hD)] is

h

i
{a, b} − h2

2
tr(∇2

ξa · ∇2
xb−∇2

xa · ∇2
ξb) + h3(1−2δ)Sδ(m1m2),

where {a, b} is the Poisson bracket of a of b, and ∇2
ξa · ∇2

xb is the product of two Hessian
matrices, and tr is the trace.

The proof is left as an exercise. Finally, we also have symbolic calculus for the adjoint.

Theorem 7.13 (Adjoint of standard quantizations). Let a ∈ Sδ(m). Denote

(a(x, hD)u, v) = (u, a∗(x, hD)v),

then a∗ ∈ Sδ(m), and when h→ 0+ we have the semiclassical asymptotics,

a∗(x, ξ) =
∑
|α|≤N

h|α|

α!
Dα
x∂

α
ξ ā(x, ξ) + h(1−2δ)(N+1)Sδ(m). (7.22)

We omit the proof.

7.3. Composition of the Weyl quantizations

The composition of the Weyl quantizations are more peculiar than that of the standard
ones, and we explain this in §7.3.2. Before that, we make some preparation first.

7.3.1. Symplectic 2-form. We define the symplectic product.

Definition 7.14 (Symplectic product). The symplectic product is defined as

σ : R2n × R2n → R, σ((x, ξ), (y, η)) := ξ · y − x · η.

Remark 7.2. The underlying space R2n in Definition 7.14 can be generalized to be
a tangent bundle. When R2n is replaced by a tangent bundle TM (or T ∗M) where M
is n-dimensional (hence TM is locally homeomorphic to R2n), σ can be generalized as a
bilinear form on Tp(TM) × Tp(TM) in the following way. For any p ∈ TM and (ux, uξ),
(vx, vξ) ∈ Tp(TM), we define

σ : T (TM)× T (TM)→ R, σ|p((ux, uξ), (vx, vξ)) := uξ · vx − ux · uξ
Locally speaking, when imposed a local coordinates system {xj} on M and the correspond-
ing coordinates {ξj} on the fiber, it can be checked that σ = dξj ∧dxj (Einstein summation
convention invoked) and it is invariant w.r.t. the coordinates systems. This σ is a 2-form
on the tangent bundle and is called the symplectic 2-form.

In what follows, we only work on R2n rather than on general manifolds. If without
otherwise stated, we will use the following notations,

z = (x, ξ)T ∈ R2n, w = (y, η)T ∈ R2n, ζ = (x, ξ, y, η)T = (zT , wT )T ∈ R4n. (7.23)

Note that all of z, w and ζ are vertical vectors. Definition 7.14 is equivalent to

σ(z, w) = zT ·
(

0 −I
I 0

)
· w = zT · σ · w = 〈σT z, w〉 (7.24)
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where I is the identity n × n matrix and σ =

(
0 −I
I 0

)
. Note that σ is non-degenerate

and anti-symmetric, i.e. σ−1 = σT = −σ.
We note that (7.24) is homogeneous of degree 2 of ζ (i.e. σ(hζ) = h2σ(ζ)), but not in a

quadratic form of ζ under a symmetric matrix (σ is not symmetric). We can achieve this
by

σ(ζ) = σ(z, w) = zT · σ · w =
1

2
ζT ·

(
0 σ
σT 0

)
· ζ =

1

2
ζT · Σ · ζ,

where

Σ =

(
0 σ
σT 0

)
(7.25)

is a 4n×4n matrix. Note that Σ is non-degenerate and symmetric satisfying Σ−1 = ΣT = Σ,
det Σ = 1 and sgn Σ = 0. In summary, we have

σ(z, w) = zT · σ · w = 〈σT z, w〉 =
1

2
ζT · Σ · ζ =

1

2
〈Σζ, ζ〉. (7.26)

7.3.2. The composition. If we mimic the proof of Theorem 7.11, we would have

aw(x, hD) ◦ bw(x, hD)ϕ

=(2πh)−2n

∫
ei(x−z)·η/h

( ∫
ei(x−y)·(ξ−η)/ha(

x+ y

2
, ξ)b(

y + z

2
, η) dy dξ

)
ϕ(z) dz dη

=(2πh)−2n

∫
ei(x−z)·η/h

( ∫
e−iy·ξ/ha(

y

2
+ x, ξ + η)b(

y

2
+
x+ z

2
, η) dy dξ

)
ϕ(z) dz dη

=(2πh)−n
∫
ei(x−z)·η/h · c(x+ z

2
, η) · ϕ(z) dz dη = cw(x, hD)ϕ

where the c should satisfy

c(
x+ z

2
, η) = (2πh)−n

∫
e
−i
2h
〈Q(y,ξ),(y,ξ)〉a(

y

2
+ x, ξ + η)b(

y

2
+
x+ z

2
, η) dy dξ.

However, this argument doesn’t work, because there is an additional x on the RHS.
Instead, from aw(x, hD) ◦ bw(x, hD) = cw(x, hD) we can proceed as follows,

aw(x, hD) ◦ bw(x, hD)ϕ

=(2πh)−2n

∫
ei[(x−y)·ξ+(y−z)·η]/ha(

x+ y

2
, ξ)b(

y + z

2
, η)ϕ(z) dy dz dξ dη

=(2πh)−n
∫
ei(x−z)·ζ/hc(

x+ z

2
, ζ)ϕ(z) dz dζ,

which, due to the arbitrary of ϕ, suggests∫
ei(x−z)·ζ/hc(

x+ z

2
, ζ) dζ = (2πh)−n

∫
ei[(x−y)·ξ+(y−z)·η]/ha(

x+ y

2
, ξ)b(

y + z

2
, η) dy dξ dη.

Readers may note that the LHS is an inverse Fourier transform. We make the following
change of variable before we perform the Fourier transform:

x− z
2

= s

x+ z

2
= t

⇒
{
x = t+ s

z = t− s
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so ∫
ei2s·ζ/hc(t, ζ) dζ

=(2πh)−n
∫
ei[(t+s−y)·ξ+(y−t+s)·η]/ha(

t+ s+ y

2
, ξ)b(

y + t− s
2

, η) dy dξ dη,

and

c(t, ζ)

=(2πh)−2n

∫
e−i2s·ζ/hei[(t+s−y)·ξ+(y−t+s)·η]/ha(

t+ s+ y

2
, ξ)b(

y + t− s
2

, η) dy dξ dη d(2s)

=2n(2πh)−2n

∫
ei[(y−t)·(η−ξ)+s·(ξ+η−2ζ)]/ha(

t+ y + s

2
, ξ)b(

t+ y − s
2

, η) dy ds dξ dη

=2n(2πh)−2n

∫
ei[y·(η−ξ)+s·(ξ+η)]/ha(

y + s

2
+ t, ξ + ζ)b(

y − s
2

+ t, η + ζ) dy ds dξ dη

=2n(2πh)−2n

∫
ei[(y+s)·η−(y−s)·ξ]/ha(

y + s

2
+ t, ξ + ζ)b(

y − s
2

+ t, η + ζ) dy dsdξ dη

=2n(2πh)−2n

∫
ei(2y

′·η−2s′·ξ)/ha(y′ + t, ξ + ζ)b(s′ + t, η + ζ)2n dy′ ds′ dξ dη

=(πh)−2n

∫
ei2(y·η−s·ξ)/ha(y + t, ξ + ζ)b(s+ t, η + ζ) dy dξ dsdη

=(πh)−2n

∫
eih
−1〈−2Σ(y,ξ,s,η),(y,ξ,s,η)〉/2a(y + t, ξ + ζ)b(s+ t, η + ζ) dy dξ ds dη, (7.27)

where the 4n× 4n matrix Σ is defined in (7.25), and we used Exercise 7.2.
Recall that Σ−1 = Σ, det Σ = 1 and sgn Σ = 0. Now we apply Proposition 4.3 to (7.27)

and obtain

c(t, ζ) ∼ (πh)−2n(2πh)2n

|det(2Σ)|1/2
∑
j

hj

j!

(
〈(−2Σ)−1D(y,ξ,s,η), D(y,ξ,s,η)〉

2i

)j (
a(y + t, ξ + ζ)

× b(s+ t, η + ζ)
)
|y=s=ξ=η=0

=
∑
j

(h/(2i))j

j!

(
〈−1

2
ΣD(y,ξ,s,η), D(y,ξ,s,η)〉

)j(
a(y, ξ)b(s, η)

)
|y=s=t, ξ=η=ζ

=
∑
j

(ih/2)j

j!

(
Ds ·Dξ +∇y · ∇η

)j(
a(y, ξ)b(s, η)

)
|y=s=t, ξ=η=ζ ,

where we used Exercise 7.2. Here for simplicity we omitted the analysis of the remainder
terms, and for the detailed analysis of the remainder, readers may refer to [Zwo12]. Noticing
that

(Ds ·Dξ +∇y · ∇η)j =
∑

0≤k≤j

(
j

k

)
(Ds ·Dξ)

k(∇y · ∇η)j−k

=
∑

0≤k≤j

(
j

k

) ∑
|α|=k

k!

α!
Dα
sD

α
ξ

∑
|β|=j−k

(j − k)!

β!
∇βy∇βη (by (5.8))

=
∑

0≤k≤j

∑
|α|=k

∑
|β|=j−k

j!

α!β!
Dα
sD

α
ξ ∂

β
y ∂

β
η
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=
∑

|α|+|β|=j

j!

α!β!
Dα
sD

α
ξ ∂

β
y ∂

β
η ,

we can continue

c(t, ζ) ∼
∑
j

∑
|α|+|β|=j

(ih/2)j

j!

j!

α!β!
Dα
sD

α
ξ ∂

β
y ∂

β
η

(
a(y, ξ)b(s, η)

)
|y=s=t, ξ=η=ζ

=
∑
α,β

(ih/2)|α|+|β|

α!β!

[
Dβ
x∂

α
ξ

(
a(x, ξ)

)
Dα
x∂

β
ξ

(
b(x, ξ)

)]∣∣
x=t, ξ=ζ

.

We have just proved the following result:

Theorem 7.15 (Composition of quantizations of semiclassical symbols). Assume that
a ∈ Sδ(m1), b ∈ Sδ(m2). Denote

(a#wb)w(x, hD) = aw(x, hD) ◦ bw(x, hD),

then a#wb ∈ Sδ(m1m2) and

a#wb(x, η) = eihA(D)
(
a(x, ξ)b(y, η)

)
|y=x, ξ=η, (7.28)

where A(D) = 1
2σ((Dx, Dξ), (Dy, Dη)) = 1

2(Dy ·Dξ−Dx ·Dη) and the σ is defined in (7.23).
Moreover, when h→ 0+ we have the semiclassical asymptotics,

a#wb(x, η) =
N∑
j=0

(ih/2)j

j!
(Dy ·Dξ +∇x · ∇η)j

(
a(x, ξ)b(y, η)

)
|y=x, ξ=η

+ h(1−2δ)(N+1)Sδ(m1m2)

=
∑

|α|+|β|≤N

(ih/2)|α|+|β|

α!β!
∂βxD

α
η a(x, η)Dα

x∂
β
η b(x, η)

+ h(1−2δ)(N+1)Sδ(m1m2).

(7.29)

Remark 7.3. Similar to Remark 7.1, the expansion (7.29) will be finite when either
a(x, ξ) or b(x, ξ) is polynomial of ξ.

Readers may refer to [Zwo12, §4.11] for an another proof of Theorem 7.15.

Corollary 7.16. The first two leading terms of a#wb is ab− ih{a, b}/2. Assume

a ∈ Sδ(m1) and b ∈ Sδ(m2), then the commutator of aw(x, hD) and bw(x, hD) is

[aw(x, hD), bw(x, hD)] =
h

i
{a, b}w(x, hD) + h3(1−2δ)Oph(Sδ(m1m2)),

where {a, b} is the Poisson bracket of a of b.

The remainder in the commutator expression looks out of expectation; it is of order
h3(1−2δ) rather that h2(1−2δ). This is because the second order leading term is in fact zero.

Proof. From (7.29) we have

a#wb = ab+
ih

2
Dξa ·Dxb+

ih

2
∇xa · ∇ξb

+
(ih/2)2

2!
[(∇x · ∇η)2 + (∇ξ · ∇y)2 − 2(∇x · ∇η)(∇ξ · ∇y)](ab)

+ h3(1−2δ)Sδ(m1m2)
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= ab− ih{a, b}/2

+
(ih/2)2

2!
[tr(∇2

xa · ∇2
ηb) + tr(∇2

ξa · ∇2
yb)− 2 tr(∇2

(x,ξ)a · ∇
2
(y,η)b)]|y=x, ξ=η

+ h3(1−2δ)Sδ(m1m2)

= ab− ih{a, b}/2 +
(ih/2)2

2!
[tr(∇2

xa · ∇2
ηb) + tr(∇2

xb · ∇2
ηa)− 2 tr(∇2

(x,η)a · ∇
2
(x,η)b)]

+ h3(1−2δ)Sδ(m1m2),

hence

a#wb− b#wa = −ih{a, b}+ h3(1−2δ)Sδ(m1m2).

The proof is complete. �

7.3.3. Specialties of Weyl quantization.

Lemma 7.17. For u, v ∈ S (Rn), we have

(aw(x, hD)u, v) = (u, āw(x, hD)v).

The proof is left as an exercise.
The Weyl quantization is the correct generalization of a solution operator of an ODE.

It is straightforward to check that v(x, t) = etf(x)u(x) is the solution of an ODE{
∂tv(x, t) = f(x)v(x, t), t ∈ R,
v(x, 0) = u(x).

Recall the linear form l(x, ξ) = x∗ · x + ξ∗ · ξ. Now we would like to generalize the afore-

mentioned idea by replacing f(x) with an operator i
h l(x, hD) and define e

it
h
l(x,hD)u as the

unique solution of the corresponding ODE. But in order to avoid notational confusion be-

tween “e
it
h
l(x,hD)u” and “(e

it
h
l)(x, hD)u” defined in (7.6), we deprecate the use of e

it
h
l(x,hD)u.

We will see from the following result that the correct generalization will be the Weyl quan-

tization (e
it
h
l)w(x, hD)u instead of the standard quantization (e

it
h
l)(x, hD)u.

Lemma 7.18. Let l(x, ξ) = x∗ · x + ξ∗ · ξ for fixed x∗, ξ∗ ∈ Rn. For every u ∈ S , the

Weyl quantization (e
it
h
l)w(x, hD)u is the unique solution of the ODE∂tv(x, t) =

i

h
l(x, hD)v(x, t), t ∈ R,

v(x, 0) = u(x).
(7.30)

e
it
h
l(x,hD) = (e

it
h
l)w(x, hD). (7.31)

Specifically, we have

(e
it
h
l)w(x, hD)u = e

i
h

[(x∗·x)t+(x∗·ξ∗)t2/2]u(x+ ξ∗t). (7.32)

And we have the composition relation

e
it
h
l(x,hD)e

it
h
m(x,hD) = e

it2

2h
σ(l,m)e

it
h

(l+m)(x,hD), (7.33)

where the σ is given in Definition 7.14.
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Proof. First, we solve (7.30). By this ODE we have ∂tv(x, t) = i
h(x∗ ·x+ξ∗ ·hD)v(x, t),

which gives a transport equation (∂t − ξ∗ · ∇)v(x, t) = i
hx
∗ · xv(x, t). Let γ : t ∈ R 7→

(x− ξ∗t, t) ∈ Rn+1 be a curve, then we can obtain

d

dt

(
v(γ(t))

)
= (∂t − ξ∗ · ∇)v(γ(t)) =

i

h
x∗ · (x− ξ∗t)v(γ(t)).

This is a one-dimensional ODE and the solution is straightforward,

v(γ(t)) = e
i
h

[(x∗·x)t−(x∗·ξ∗)t2/2]v(γ(0)),

which is equivalent to

v(x− ξ∗t, t) = e
i
h

[(x∗·x)t−(x∗·ξ∗)t2/2]v(x, 0).

By replacing x with x + ξ∗t and substituting the boundary condition v(x, 0) = u(x) into
the solution above, we obtain

v(x, t) = v((x+ ξ∗t)− ξ∗t, t)

= e
i
h

[x∗·(x+ξ∗t)t−(x∗·ξ∗)t2/2]u(x+ ξ∗t)

= e
i
h

[(x∗·x)t+(x∗·ξ∗)t2/2]u(x+ ξ∗t)

⇒ e
it
h
l(x,hD)u = e

i
h

[(x∗·x)t+(x∗·ξ∗)t2/2]u(x+ ξ∗t). (7.34)

Second, we compute (e
it
h
l)w(x, hD)u. We have

(e
it
h
l)w(x, hD)u = (2πh)−n

∫∫
ei(x−y)·ξ/he

it
h

[x∗·(x+y
2

)+ξ∗·ξ]u(y) dy dξ

= e
it
h

(x∗·x
2

)(2πh)−n
∫∫

ei(x+ξ∗t−y)·ξ/h · e
it
h

(x∗· y
2

)u(y) dy dξ

= e
it
h

(x∗·x
2

)

∫
δ(x+ ξ∗t− y)e

it
h

(x∗· y
2

)u(y) dy
(
(2πh)−n

∫
eia·ξ/h dξ = δ(a)

)
= e

it
h

(x∗·x
2

)e
it
h
x∗· (x+ξ

∗t)
2 u(x+ ξ∗t) = e

i
h

[(x∗·x)t+(x∗·ξ∗)t2/2]u(x+ ξ∗t),

which is (7.32). From (7.34) and (7.32) we arrive at the first equality in the theorem.
For the composition relation, let l(x, ξ) = x∗1 ·x+ ξ∗1 · ξ and m(x, ξ) = x∗2 ·x+ ξ∗2 · ξ, then

from (7.34) we have

e
it
h

(l+m)(x,hD)u = e
i
h

[(x∗1+x∗2)·xt+(x∗1+x∗2)·(ξ∗1+ξ∗2)t2/2]u(x+ (ξ∗1 + ξ∗2)t),

and

e
it
h
l(x,hD)e

it
h
m(x,hD)u = (e

it
h
l)w(x, hD) ◦ e

i
h

[(x∗2·x)t+(x∗2·ξ∗2)t2/2]u(x+ ξ∗2t)

= e
i
h

[(x∗1·x)t+(x∗1·ξ∗1)t2/2]e
i
h

[(x∗2·(x+ξ∗1 t))t+(x∗2·ξ∗2)t2/2]u(x+ ξ∗1t+ ξ∗2t)

= e
i
h

[(x∗1+x∗2)·xt+(x∗1·ξ∗1+2x∗2·ξ∗1+x∗2·ξ∗2)t2/2]u(x+ (ξ∗1 + ξ∗2)t)

= e
i
h

[(x∗1+x∗2)·xt+(x∗1+x∗2)(x∗2+ξ∗2)t2/2]u(x+ (ξ∗1 + ξ∗2)t) · e
i
h

[(x∗2·ξ∗1−x∗1·ξ∗2)t2/2]

= e
it2

2h
σ((x∗1,ξ

∗
1),(x∗2,ξ

∗
2))e

it
h

(l+m)(x,hD)u.

Readers should note that the σ here is the symplectic product defined in Definition 7.14.
The proof is complete. �

By using (7.31), we can represent the corresponding Weyl quantization of a symbol by
its Fourier transform.
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Lemma 7.19 (Fourier decomposition of aw). For any a(x, ξ) ∈ S (R2n), we have

aw(x, hD) = (2πh)−n
∫
R2n

Fha(l)e
i
h
l(x,hD) dl,

where l = (x∗, ξ∗) ∈ R2n and l(x, hD) is defined as (7.12). This can directly generalize to

the case where a(x, ξ) ∈ S ′(R2n) and then 〈aw(x, hD)u, v〉 = (2πh)−2nâ(〈e
i
h
l(x,hD)u, v〉) for

∀u, v ∈ S (Rn).

Remark 7.4. With the help of Lemma 7.19, every Weyl quantization can be represented

by means of operators of the form e
i
h
l(x,hD) where l is a linear form. Therefore, quantizations

of the form e
i
h
l(x,hD) plays an important role in semiclassical analysis.

Proof of Lemma 7.19. When a ∈ S , we have

a(x, ξ) = (2πh)−n
∫
R2n

e
i
h
l(x,ξ)Fha(l) dl,

thus by (7.31) we arrive at the statement. The case where a(x, ξ) ∈ S ′(R2n) is left as an
exercise. �

7.4. Applications in Carleman estimates

One of the examples of Carleman estimates is of the following

τ3‖eτφu‖2 . ‖eτφPu‖2. (7.35)

To prove it, we set h = τ−1, v(x) = eφ(x)/hu(x) and denote an operator Pφ as

Pφ : f → eφ/hh2P (e−φ/hf),

then (7.35) is equivalent to
‖Pφv‖2 & h‖v‖2. (7.36)

We assume
σscl(Pφ) ∈ S(m) (7.37)

for some order function m. Here we use σscl(A) to signify the semiclassical symbol of A.
Set A = (Pφ + P ∗φ)/2 and B = (Pφ − P ∗φ)/(2i), and denote

σ = σscl(ih
−1[A,B]),

then we can conclude

‖Pφv‖2L2 = (Pφv, Pφv) = ‖Av‖2 + ‖Bv‖2 + (i[A,B]v, v) ≥ h(σ(x, hD)v, v), (7.38)

σ(x, hD) is self-adjoint, i.e. σ(x, hD)∗ = σ(x, hD). (7.39)

Using (7.38), inequality (7.36) will be true if the following is true:

(σ(x, hD)v, v) & ‖v‖2, (7.40)

so (7.40) implies (7.35). It’s left to prove (7.40).
To prove (7.40), we compute

σ = σscl(ih
−1[A,B]) = σscl(ih

−1[(Pφ + P ∗φ)/2, (Pφ − P ∗φ)/(2i)])

=
1

2h
σscl([P

∗
φ , Pφ]) =

1

2h
[
h

i
{p∗φ, pφ}+ h2S(m2)] (Corollary 7.12)

=
1

2i
{pφ + hS(m), pφ}+ hS(m2) (Theorem 7.13)

=
1

2i
{pφ, pφ}+ hS(m2) = {<pφ,=pφ}+ hS(m2). (7.41)
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The remainder term S(m2) comes from the assumption (7.37) and the fact σscl(P
∗
φ) ∈ S(m).

If

{<pφ,=pφ}(x, ξ) ≥ Cm(x, ξ)2, (m(x, ξ) ≥ 1) (7.42)

holds, from (7.41) we know when h is small enough we will have

|σ(x, ξ)| & m(x, ξ)2. (7.43)

By combining (7.43), (7.39) and [Zwo12, Theorem 4.19], we can conclude (7.40). In sum-
mary, we have the following theorem.

Theorem 7.20 (Carleman estimates). Let P be a SΨDO and φ ∈ C∞(Rn;R) and denote

Pφ := eφ/h ◦ h2P ◦ e−φ/h and pφ := σscl(Pφ). Assume{
σscl(Pφ) ∈ S(m) for some order function m(x, ξ) ≥ 1

{<pφ,=pφ}(x, ξ) ≥ Cm(x, ξ)2,

then there exist positive constants C and τ0 such that for ∀τ ≥ τ0, ∀u ∈ S (Rn), there holds

τ3‖eτφu‖2 ≤ C‖eτφPu‖2.

Exercise

Exercise 7.1. Prove Corollary 7.12.

Exercise 7.2. Assume y, ξ, s, η ∈ Rn, and define the 4n×4n matrix Σ by (7.25). Check

1

2
〈Σ(y, ξ, s, η), (y, ξ, s, η)〉 = s · ξ − y · η,

1

2
〈ΣD(y,ξ,s,η), D(y,ξ,s,η)〉 = Ds ·Dξ +∇y · ∇η.

Exercise 7.3. Prove Lemma 7.17.



CHAPTER 8

The wavefront set

In this chapter we follow closely [Che17, §3].

8.1. Basic facts

Recall the Peetre’s inequality (cf Lemma 5.2):

〈a− b〉m ≤ 〈a〉m · 〈b〉|m|, ∀a, b ∈ Rn and ∀m ∈ R. (8.1)

We also need a angular separation inequality, which states that

|a− b| ≥ C(|a|+ |b|), ∀a ∈ V1, ∀ b ∈ V2, (8.2)

provided that V1 and V2 are two cone in Rn separating each other by a positive angle, and
the positive constant C depends on this angle. One example is that V1 = {ρ(cosα, sinα) ∈
R2 ; ρ ≥ 0, 0 ≤ α ≤ π/4} and V2 = {ρ(cosα, sinα) ∈ R2 ; ρ ≥ 0, 3π/4 ≤ α ≤ π}. From
(8.2) we can easily derive

〈a− b〉−m1−m2 ≤ C〈a〉−m1 · 〈b〉−m2 , ∀a ∈ V1, ∀b ∈ V2, ∀m1,m2 ≥ 0. (8.3)

Proof of (8.3). From |a − b| & |a| + |b| we have (1 + |a − b|)−1 . (1 + |a|)−1 and
(1 + |a − b|)−1 . (1 + |b|)−1, so (1 + |a − b|)−m1−m2 . (1 + |a|)−m1(1 + |b|)−m2 , which is
equivalent to (8.3). �

These inequalities are frequently used in microlocal analysis and sometimes play key role
in the proofs of microlocal analysis. We use the notation T ∗Rn\0 to stand for the cotangent
bundle with the zero section excluded. We deliberately exclude the zero section for some
purpose, see Remark 8.2. We introduce the notion of conic sets, the smooth direction and
the wavefront set as follows.

Definition 8.1 (Conic set). A set Γ ⊂ T ∗Rn\0 is called a conic set if Γ = ω × V for
some ω ⊂ Rn and some set V ⊂ Rn\0, where the set V is conic in Rn, i.e. if ξ ∈ V then
tξ ∈ V for all t > 0.

Definition 8.2 (Smo). Let m ∈ R and a ∈ Sm, and A is the ΨDO of a. Let Γ ⊂ T ∗Rn\0
be a open conic set. If for every integer N there exists a constant CΓ,N such that

|a(x, ξ)| ≤ CΓ,N 〈ξ〉−N , ∀(x, ξ) ∈ Γ, (or equivalently a ∈ S−∞ in Γ. ) (8.4)

holds, we say Γ is a smooth direction set of a (and of A). We write Smo(A) :=
⋃

F where

F = {Γ ; Γ is a smooth direction set of A}.

It can be checked that Smo(a) is always open in T ∗Rn\0. We can also extend the
Smo(a) to a which is in Sm(Rnx ×RNξ ) (n and N need not to be the same). The idea of the
smooth direction is that, for any symbol a ∈ Sm, no matter what the value of m is, there
are chances that there exists some directions in ξ such that a decays at infinite speed in
these direction.

77
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Lemma 8.3. Assume A,B ∈ Ψ+∞, then Smo(A) ∪ Smo(B) ⊂ Smo(A ◦B).

The proof is left as an exercise.

Definition 8.4 (Wavefront set). Assume Ω ⊂ Rn is a domain. For any given distribu-

tion u ∈ D ′(Ω), the wavefront set WF(u) ⊂ T ∗Ω\0 of u is defined as a closed subset such

that, for any (x0, ξ0) /∈WF(u), there exists a neighborhood ω of x0, a function ϕ ∈ C∞c (Ω)
with ϕ(x0) 6= 0 and suppϕ ⊂ ω, and a cone neighborhood V of ξ0 such that

|ϕ̂u(ξ)| ≤ CN,ω,V 〈ξ〉−N , ∀N ∈ N, ∀ξ ∈ V (8.5)

holds for some positive constant CN,ω,V depending on N , ω and specially on V .

Example 8.5. Compute the wavefront set of u(x1, x2) := H(x1), where H is the Heav-
iside function. Fix a point (x̄1, x̄2). When x̄1 6= 0, we can always find a cutoff function
ϕ ∈ C∞c (R2) such that ϕu ∈ C∞c (R2), so ϕ̂u will be rapidly decaying. This implies that

{(x̄1, x̄2; ξ1, ξ2) ; x̄1 6= 0} ∩WF(u) = ∅, (8.6)

so WF(u) is made of points of the form (0, x2; ξ1, ξ2), thus in what follows we assume x̄1 = 0.
Fix cutoff functions ϕ1, ϕ2 ∈ C∞c (R1), such that ϕ1 is supported in the neighborhood

of 0 and ϕ2 in the neighborhood of x̄2, and denote ϕ(x1, x2) = ϕ1(x1)ϕ2(x2), then

|ϕ̂u(ξ1, ξ2)| ' |
∫ ∞

0
e−ix1ξ1ϕ1(x1) dx1| · |

∫
e−ix2ξ2ϕ2(x2) dx2|. (8.7)

When ξ2 6= 0, we can continue (8.7) as

|ϕ̂u(ξ1, ξ2)| .
∫
|ϕ1(x1)|dx1 · 〈ξ2〉−∞ . 〈ξ2〉−∞. (8.8)

For any cone VC := {(ξ1, ξ2) ; |ξ1| ≤ C|ξ2|} where C > 0, we have |ξ2| ≤ |ξ1| + |ξ2| . |ξ2|,
which implies 〈(ξ1, ξ2)〉 ' 〈ξ2〉. Hence, (8.8) becomes |ϕ̂u(ξ1, ξ2)| . 〈ξ〉−∞. Hence, for any
constant C > 0, we have

{(0, x̄2; ξ1, ξ2) ; x̄2 ∈ R, |ξ1| ≤ C|ξ2|} ∩WF(u) = ∅. (8.9)

Combining (8.6) and (8.9), we see that

WF(u) ⊂ {(0, x̄2; ξ1, 0) ; x̄2 ∈ R}. (8.10)

Finally, we show

WF(u) ⊃ {(0, x̄2; ξ1, 0) ; x̄2 ∈ R}. (8.11)

Fix x̄2 ∈ R. For any ϕ ∈ C∞c (R2) supported in the neighborhood of (0, x̄2), we have

ϕ̂u(ξ1, ξ2) '
∫
e−ix1ξ1e−ix2ξ2ϕ(x1, x2)H(x1) dx1 dx2

=

∫ ∞
0

e−ix1ξ1ϕ̃(x1, ξ2) dx1 = iξ−1
1 ϕ̃(0, ξ2) + ξ−1

1

∫ ∞
0

e−ix1ξ1Dx1ϕ̃(x1, ξ2) dx1

= iξ−1
1 ϕ̃(0, ξ2) + ξ−1

1

(
iξ−1

1 Dx1ϕ̃(0, ξ2) + ξ−1
1

∫ ∞
0

e−ix1ξ1D2
x1ϕ̃(x1, ξ2) dx1

)
= iξ−1

1 ϕ̃(0, ξ2) +O(|ξ1|−2), (8.12)

where ϕ̃(x1, ξ2) =
∫
R e
−ix2ξ2ϕ(x1, x2) dx2. We know ϕ̃(0, ξ2) =

∫
R e
−ix2ξ2ϕ(0, x2) dx2 is

not compactly supported due to the uncertainty principle, so there is ξ̄2 6= 0 such that
ϕ̃(0, ξ̄2) 6= 0. For any cone V ′C := {(ξ1, ξ2) ; |ξ2| ≤ C|ξ1|} where C > 0, when |ξ1| is large
enough we always have (ξ1, ξ̄2) ∈ V ′C . Hence, (8.12) means that in any cone V ′C , we have

|ϕ̂u(ξ1, ξ̄2)| ' |ξ1|−1|ϕ̃(0, ξ̄2)|+O(|ξ1|−2) ' |ξ1|−1,
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so ϕu is not rapidly decaying in any cone V ′C which contains {(ξ1, 0)} as their common part.
By the definition of the wavefront set we can conclude

(0, x̄2; ξ1, 0) ∈WF(u),

which implies (8.11). Combining (8.10) with (8.11), we obtain

WF(u) = {(0, x2; ξ1, 0) ; x2 ∈ R, ξ1 6= 0}, where u(x1, x2) = H(x1).

It is easy to see from the definition that (WFu)c is an open set, so every wavefront set
is closed. In fact, we can relax the restriction on the function ϕ in the Definition (8.4) as
follows.

Lemma 8.6. Using the same notation in Definition 8.4, if (x0, ξ0) /∈WF(u), then there
exists a another neighborhood ω′ ⊂ ω of x0, such that for any ϕ ∈ C∞c (ω′), which doesn’t
necessarily satisfy ϕ(x0) 6= 0, the estimates (8.5) holds, with the constant CN,ω,V now
depends also on ϕ.

Proof. We call for the result (2) in Theorem 8.7 below in advance. Assume that
(x0, ξ0) /∈WF(u), then there exists a neighborhood ω of x0, a function ϕ0 ∈ C∞c (Rn) with
ϕ0(x0) 6= 0 and a cone neighborhood V of ξ0 such that (8.5) holds. Because ϕ0(x0) 6= 0
and ϕ0 is continuous, there exists another neighborhood ω′ ⊂ ω of x0 such that |ϕ0(x)| ≥
|ϕ0(x0)/2| > 0 for all x ∈ ω′, and thus 1/ϕ0(x) is well-defined in ω′; the denominator keeps
a positive distance from 0 in ω′. Now for any φ ∈ C∞c (ω′), we know φ/ϕ0 ∈ C∞c (ω′), hence

|φ̂u(ξ)| = |(φ/ϕ0 · ϕ0u)∧(ξ)| ' |
∫
ϕ̂0u(ξ − η) · φ̂/ϕ0(η) dη|

≤
∫
|ϕ̂0u(ξ − η)| · |φ̂/ϕ0(η)|dη .

∫
〈ξ − η〉−N · 〈η〉−N−n−1 dη

≤ 〈ξ〉−N
∫
〈η〉N · 〈η〉−N−n−1 dη . 〈ξ〉−N , ∀N ∈ N.

Note that we used Peetre’s inequality (8.1). The proof is complete. �

The wavefront set possesses some simple facts [Che17].

Theorem 8.7. Assume that u, v ∈ D ′(Ω) and a ∈ C∞c (Ω), then we have

(1) WF(u+ v) ⊆WF(u) ∪WF(v);
(2) WF(au) ⊆WF(u);
(3) WF(Dαu) ⊆WF(u).

Proof. For (1). Assume that (x0, ξ0) /∈ WF(u) ∪WF(v), then (x0, ξ0) ∈
(

WF(u)
)c ∩(

WF(v)
)c

, so there exists neighborhoods ω1 and ω2 of x0 and cone neighborhoods V1 and
V2 of ξ0 such that

|ϕ̂x0u(ξ)| ≤ C〈ξ〉−N , ∀ξ ∈ V1, ∀ϕx0 ∈ D(ω1) with ϕx0(x0) 6= 0, ∀N ∈ N,

|ϕ̂x0v(ξ)| ≤ C〈ξ〉−N , ∀ξ ∈ V2, ∀ϕx0 ∈ D(ω2) with ϕx0(x0) 6= 0, ∀N ∈ N.
Thus, we have

|ϕ̂x0w(ξ)| ≤ C〈ξ〉−N , ∀ξ ∈ V1 ∩ V2, ∀ϕx0 ∈ D(ω1 ∩ ω2) with ϕx0(x0) 6= 0, ∀N ∈ N,
where w = u or v, so (x0, ξ0) /∈WF(u+ v). We can conclude (1).

For (2). Assume (x0, ξ0) /∈WF(u), then there exists a neighborhood ω of x0, a function
ϕ ∈ D(Rn) with ϕ(x0) 6= 0 and a cone neighborhood V of ξ0 such that for all ξ ∈ V ,

|ϕ̂au(ξ)| = |(a · ϕu)∧(ξ)| ' |
∫
ϕ̂u(ξ − η) · â(η) dη|
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≤
∫
|ϕ̂u(ξ − η)| · |â(η)| dη .

∫
〈ξ − η〉−N · 〈η〉−N−n−1 dη

≤ 〈ξ〉−N
∫
〈η〉N · 〈η〉−N−n−1 dη . 〈ξ〉−N , ∀N ∈ N.

Therefore (x0, ξ0) /∈WF(au). We can conclude (2).

For (3). Assume (x0, ξ0) /∈WF(u). For any ϕ ∈ D(ω′) where the ω′ is as in Lemma 8.6,
we have

φ̂Dαu(ξ) '
∫
e−ix·ξφ(x)Dαu(x) dx '

∫
Dα(e−ix·ξφ(x))u(x) dx

=

∫ ∑
|β|≤|α|

(
α

β

)
Dβ(e−ix·ξ)Dα−βφ(x)u(x) dx

=
∑
|β|≤|α|

ξβ
(
α

β

)∫
e−ix·ξ(Dα−βφ · u)(x) dx

=
∑
|β|≤|α|

ξβ
(
α

β

)
(Dα−βφ · u)∧(ξ).

Thus, by Lemma 8.6,

|φ̂Dαu(ξ)| ≤
∑
|β|≤|α|

ξβ
(
α

β

)
|(Dα−βφ · u)∧(ξ)| .

∑
|β|≤|α|

(
α

β

)
〈ξ〉|β|〈ξ〉−N−|α| . 〈ξ〉−N ,

for any N ∈ N. Therefore (x0, ξ0) /∈WF(Dαu). We can conclude (3).
The proof is complete. �

8.2. Wavefront set of product of distributions

In this section we deal with some more sophisticated cases of the computations of the
wavefront sets.

8.2.1. Direct product. The first theorem is about the wavefront of the direct product
u⊗ v. For u : D(Ωx) → C and v : D(Ωy) → C, we define the direct product u⊗ v of u and
v as a distribution on D(Ωx × Ωy) that maps ϕ(x, y) ∈ D(Ωx × Ωy) to 〈u, 〈v, ϕ(x, y)〉y〉x,

〈u⊗ v, ϕ(x, y)〉 := 〈u, 〈v, ϕ(x, y)〉y〉x.

Theorem 8.8. For any given distributions u ∈ D ′(Ωx) and v ∈ D ′(Ωy), the wavefront
set of the direct product u⊗ v satisfies

WF(u⊗ v) ⊆
(

WF(u)×WF(v)
)
∪
(

WF(u)× supp0v
)
∪
(
supp0u×WF(v)

)
, (8.13)

where supp0u := {(x, 0) ; x ∈ suppu}, supp0v := {(y, 0) ; y ∈ supp v}.

Proof. Assume that (x0, y0; ξ0, η0) doesn’t belong to the right-hand-side of (8.13).
For the case where ξ0 6= 0 and η0 6= 0, we know (x0; ξ0) /∈WF(u) and (y0; η0) /∈WF(v),

so the Fourier transform (ϕ(x0,y0)u⊗v)∧(ξ0, η0) cannot have the decay of the order 〈(ξ, η)〉−N
for any N ∈ N. Therefore, (x0, y0; ξ0, η0) /∈WF(u⊗ v).

For the case where ξ0 = 0 and η0 6= 0, if x0 /∈ suppu, obviously we can conclude
(x0, y0; ξ0, η0) /∈ WF(u ⊗ v), so we suggest that x0 ∈ suppu, thus we must have (y0; η0) /∈
WF(v). Choose ϕ(x, y) = ϕ1(x)ϕ2(y) as the cutoff function where ϕ1 ∈ D(ω1) and ω1 is
some neighborhood of x0. So does ϕ2 accordingly. Thus we have

(ϕu⊗ v)∧(ξ, η) = (ϕ1u)∧(ξ) · (ϕ2v)∧(η).
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We have that (ϕ2v)∧(η) is rapidly decaying and (ϕ1u)∧(ξ) grows in polynomial order of ξ
in a cone neighborhood of (0, η). It’s easy to check that, in such a cone neighborhood, we
have 〈(ξ, η)〉 . 〈η〉 . 〈(ξ, η)〉. Therefore,

|(ϕu⊗ v)∧(ξ, η)| = |(ϕ1u)∧(ξ)| · |(ϕ2v)∧(η)| . 〈η〉−N+l · 〈ξ〉−l

. 〈(ξ, η)〉−N+l · 〈(ξ, η)〉−l = 〈(ξ, η)〉−N ,
for any N ∈ N. Therefore, (x0, y0; ξ0, η0) /∈WF(u⊗ v).

The case where ξ0 6= 0 and η0 = 0 is similar to the case where ξ0 = 0 and η0 6= 0.
The proof is complete. �

8.2.2. Product. Next, we investigate the product of two distributions. In contrast
to the product of functions, the product of two distributions is not always well-defined.
Under certain conditions, the product of two distributions can be defined, at least locally.
We know that if ϕ ∈ C∞c (Ω) and u ∈ D ′(Ω), we have ϕu ∈ E ′(Ω) and thus the Fourier
transform ϕ̂u is well-defined and can be estimated of polynomial order at infinity. Thus we
might have chance to define the product by using convolution,

(ϕ2uv)∧(ξ) := (2π)−n/2
∫
Rn

(ϕu)∧(ξ − η) · (ϕv)∧(η) dη, (8.14)

as long as the convolution (8.14) is integrable in the Lebesgue sense and grows under
polynomial order in terms of 〈ξ〉 at infinity, which implies ϕ2uv ∈ E ′(Ω). This leads to the
following result.

Theorem 8.9 (Product Theorem). For any given distributions u, v ∈ D ′(Ω), when(
WF(u) + WF(v)

)
∩Ox = ∅, (8.15)

where WF(u) + WF(v) := {(x, ξ1 + ξ2) ; (x, ξ1) ∈ WF(u), (x, ξ2) ∈ WF(v)}, and Ox :=
{(x, 0) ; x ∈ Ω}, the product “uv” can be well-defined in the sense of (8.14) and its wavefront
set satisfies

WF(uv) ⊆
(

WF(u) + WF(v)
)
∪WF(u) ∪WF(v). (8.16)

Proof. We partially follow [Fri98, Proposition 11.2.3]. The proof is divided into two
parts: first, we show that under condition (8.15) the convolution (8.14) can be controlled
at polynomial of ξ; second, we show the relation (8.16).

Step 1. For any open cone neighborhood V3 of WF(u)+WF(v), there exists open cone
neighborhoods V ′1 and V ′2 of WF(u) and WF(v), respectively, such that V ′1 +V ′2 ⊂ V3. Also,
there must exists open cone neighborhoods V1 and V2 such that

WF(u) $ V1 $ V ′1
WF(v) $ V2 $ V ′2
WF(u) + WF(v) $ V1 + V2 $ V ′1 + V ′2 $ V3(
V1 + V2

)
∩Ox = ∅

(8.17)

The V ′1 and V ′2 will be utilized in Step 2.
Fix some x0 ∈ Ω, we can find some ϕ ∈ D(Ω) with ϕ(x0) 6= 0 and also ϕ guarantees ϕu

and ϕv that (8.5) hold. For any fixed ξ0 ∈ Rn\{0}, the integral (8.14) can be divided into
four parts,∫

Rn
(ϕu)∧(ξ0 − η) · (ϕv)∧(η) dη

=

∫
{η ; (x0,ξ0−η)/∈V1

(x0,η)/∈V2}

(ϕu)∧(ξ0 − η) · (ϕv)∧(η) dη +

∫
{η ; (x0,ξ0−η)/∈V1

(x0,η)∈V2}

(ϕu)∧(ξ0 − η) · (ϕv)∧(η) dη
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+

∫
{η ; (x0,ξ0−η)∈V1

(x0,η)/∈V2}

(ϕu)∧(ξ0 − η) · (ϕv)∧(η) dη +

∫
{η ; (x0,ξ0−η)∈V1

(x0,η)∈V2}

(ϕu)∧(ξ0 − η) · (ϕv)∧(η) dη

=: I1 + I2 + I3 + I4. (8.18)

The condition (8.15) will (only) be used to estimate I4.
According to Definition 8.4 and Peetre’s inequality, we can estimate I1 as

|I1| ≤
∫
{η ; (x0,ξ0−η)/∈V1

(x0,η)/∈V2}

|(ϕu)∧(ξ0 − η)| · |(ϕv)∧(η)| dη

.
∫
Rn
〈ξ0 − η〉−N · 〈η〉−N−n−1 dη . 〈ξ0〉−N

∫
Rn
〈η〉N · 〈η〉−N−n−1 dη

. 〈ξ0〉−N , ∀N ∈ N. (8.19)

For I2, we know that ϕv ∈ E ′(Ω), so |(ϕv)∧(η)| can be dominated by 〈η〉l for some
l ∈ N, thus

|I2| ≤
∫
{η ; (x0,ξ0−η)/∈V1

(x0,η)∈V2}

|(ϕu)∧(ξ0 − η)| · |(ϕv)∧(η)|dη

.
∫
{η ; (x0,ξ0−η)/∈V1

(x0,η)∈V2}

〈ξ0 − η〉−l−n−1 · 〈η〉l dη

. 〈ξ0〉l+n+1

∫
Rn
〈η〉−l−n−1 · 〈η〉l dη (Peetre’s inequality)

. 〈ξ0〉l+n+1. (8.20)

The estimation of I3 is similar to that of I2,

|I3| ≤
∫
{η ; (x0,ξ0−η)∈V1

(x0,η)/∈V2}

|(ϕu)∧(ξ0 − η)| · |(ϕv)∧(η)|dη

=

∫
{η ; (x0,γ)∈V1

(x0,ξ0−γ)/∈V2}

|(ϕu)∧(γ)| · |(ϕv)∧(ξ0 − γ)|dγ (γ = ξ0 − η)

.
∫
{η ; (x0,γ)∈V1

(x0,ξ0−γ)/∈V2}

〈γ〉l′ · 〈ξ0 − γ〉−l
′−n−1 dγ

. 〈ξ0〉l
′+n+1

∫
Rn
〈γ〉l′ · 〈γ〉−l′−n−1 dγ (Peetre’s inequality)

. 〈ξ0〉l
′+n+1. (8.21)

For I4, we can show that the domain of integration {η ; (x0, ξ0 − η) ∈ V1, (x0, η) ∈ V2}
is bounded. We temporarily use η̂ to mean the direction of η, η̂ = η/|η|. Therefore
the direction of the vector ξ0 − η is parallel to ξ0/|η| − η̂, thus when |η| is large enough,
(x0, ξ0 − η) will be in −V2 := {(x,−η) ; (x, η) ∈ V2}. We know (x0, ξ0 − η) ∈ V1, so the set
{(x0, γ) ; (x0, γ) ∈ V1, (x0,−γ) ∈ V2} is not empty. This contradict with

(
V1 +V2

)
∩Ox = ∅

in (8.17). Therefore, when |η| is large enough, the conditions (x0, ξ0− η) ∈ V1 and (x0, η) ∈
V2 cannot be satisfies simultaneously, which implies the set {η ; (x0, ξ0 − η) ∈ V1, (x0, η) ∈
V2} is bounded. Therefore,

|I4| ≤
∫
{η ; (x0,ξ0−η)/∈V1

(x0,η)/∈V2}

|(ϕu)∧(ξ0 − η)| · |(ϕv)∧(η)|dη
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.
∫
{η ; |η| bounded}

〈ξ0 − η〉l
′ · 〈η〉l dη

. 〈ξ0〉l
′
∫
{η ; |η| bounded}

〈η〉|l′| · 〈η〉l dη (Peetre’s inequality)

. 〈ξ0〉l
′
. (8.22)

From (8.18)-(8.22), we conclude that the convolution (8.14) is Lebesgue integrable and
grows with polynomial order in terms of 〈ξ0〉, thus ϕ2uv ∈ E ′(Ω). Now uv ∈ D ′(Ω) is
well-defined.

Step 2. Under condition (8.15), we study the wavefront set of uv. Assume that

(x0, ξ0) /∈ V3 ∪ V ′1 ∪ V ′2 , (8.23)

Again, the condition (8.15) will (only) be used to estimate I4. Note the particular arrange-
ments of the V1, V ′1 and V2, V ′2 in (8.23) and (8.18). We will utilize these arrangements
combining with condition (8.17) to estimates I2 and I3.

We estimate I1 the same way as in Step 1, i.e. as in (8.19).
For I2, to get the rapid decay w.r.t. ξ0, we shall adapt different strategy. We know that

ϕv ∈ E ′(Ω), so |(ϕv)∧(η)| can be dominated by 〈η〉l for some l ∈ N. Thanks to the condition
(8.23), we know (x0, ξ0) /∈ V ′2 and now (x0, η) ∈ V2. Because V2 $ V ′2 , we know that V2 and
V ′2 are separated with a positive angle, so the inequality (8.3) can apply to 〈ξ0 − η〉,

|I2| ≤
∫
{η ; (x0,ξ0−η)/∈V1

(x0,η)∈V2}

|(ϕu)∧(ξ0 − η)| · |(ϕv)∧(η)|dη

.
∫
{η ; (x0,ξ0−η)/∈V1

(x0,η)∈V2}

〈ξ0 − η〉−N−l−n−1 · 〈η〉l dη

. 〈ξ0〉−N
∫
Rn
〈η〉−l−n−1 · 〈η〉l dη

(
by (8.3)

)
. 〈ξ0〉−N , ∀N ∈ N. (8.24)

The estimation of I3 is similar to (8.24),

|I3| ≤
∫
{η ; (x0,ξ0−η)∈V1

(x0,η)/∈V2}

|(ϕu)∧(ξ0 − η)| · |(ϕv)∧(η)|dη

=

∫
{η ; (x0,γ)∈V1

(x0,ξ0−γ)/∈V2}

|(ϕu)∧(γ)| · |(ϕv)∧(ξ0 − γ)|dγ (γ = ξ0 − η)

.
∫
{η ; (x0,γ)∈V1

(x0,ξ0−γ)/∈V2}

〈γ〉l′ · 〈ξ0 − γ〉−N−l
′−n−1 dγ

. 〈ξ0〉−N
∫
Rn
〈γ〉l′ · 〈γ〉−l′−n−1 dγ

(
by (8.3)

)
. 〈ξ0〉−N , ∀N ∈ N. (8.25)

Now we work on I4. From (8.15), (8.17) and (8.23), we know that ξ0 /∈ V1 + V2, thus
the set {η ; (x0, ξ0 − η) ∈ V1, (x0, η) ∈ V2} is empty. Therefore I4 = 0. Combining this fact
with (8.18), (8.19), (8.24) and (8.25), we arrive at

|(ϕ2uv)∧(ξ)| ≤ CN 〈ξ0〉−N , ∀N ∈ N,
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for (x0, ξ0) /∈ V3 ∪ V ′1 ∪ V ′2 . This implies WF(u+ v) ⊂ V3 ∪ V ′1 ∪ V ′2 . The sets V3, V ′1 and V ′2
can be close to WF(u) + WF(v), WF(u) and WF(v), respectively, as close as possible, so
we arrive at (8.16). The proof is complete. �

8.2.3. Convolution. We define
WF′(K) := {(x, y; ξ,−η) ; (x, y; ξ, η) ∈WF(K)},
WFx(K) := {(x; ξ) ; ∃y s.t. (x, y; ξ, 0) ∈WF(K)},

A ◦B := {(x, ξ) ; ∃(y, η) ∈ B s.t. (x, y; ξ, η) ∈ A},
Ox := {(x, 0) ; x ∈ Ω}.

(8.26)

We need the following lemma.

Lemma 8.10. Assume f ∈ D′(Ω × Ω), and there is a compact set K ⊂ Ω such that
supp f ⊂ Ω×K. Then

WF
( ∫

f(x, y) dy
)

= WFx(f). (8.27)

Proof. Step 1. (⊃). Assume (x0, ξ0) /∈ WF
( ∫

f(x, y) dy
)
, then there exists χx0 ∈

C∞c (Ω) such that∫
e−ix0·ξ0χx0(x)f(x, y) dy dx = O(〈ξ0〉−∞) = O(〈(ξ0, 0)〉−∞).

which gives

∀ȳ ∈ K,
∫
e−i(x0,ȳ)·(ξ0,0)χx0(x)χ(y)f(x, y) d(x, y) = O(〈(ξ0, 0)〉−∞),

where χ ∈ C∞c (Ω) with χ ≡ 1 on K. This means (x0, ȳ; ξ0, 0) /∈ WF(f) for ∀ȳ ∈ K, so
(x0, ξ0) /∈WFx(f). Hence,

WF
( ∫

f(x, y) dy
)
⊃WFx(f).

Step 2. (⊂). Assume (x0, ξ0) /∈ WFx(f), then for ∀ȳ ∈ Ω we have (x0, ȳ; ξ0, 0) /∈
WF(f). Therefore, for ∀ȳ ∈ Ω, there is a neighborhood of ȳ such that∫

e−i(x0,ȳ)·(ξ0,0)χx0(x)χ(y)f(x, y) d(x, y) = O(〈(ξ0, 0)〉−∞), (8.28)

for χ ≡ 1 in that neighborhood. Because K is compact, so by using partition of unity
technique, we can remove the term χ(y) in (8.28), and obtain∫

e−ix0·ξ0χx0(x)
( ∫

f(x, y) dy
)

dx = O(〈ξ0〉−∞),

which gives (x0, ξ0) /∈WF(
∫
f(x, y) dy). Hence,

WF
( ∫

f(x, y) dy
)
⊂WFx(f).

The proof is done. �

Theorem 8.11. Assume u ∈ E ′(Ω), and K ∈ D ′(Ω×Ω). When
(

WF′(K) ◦WF(u)
)
∩

Ox = ∅, the distribution

w(x) := 〈K(x, y), u(y)〉y
is well-defined in the sense that

∀ϕ ∈ D(Ω), w(ϕ) := 〈K(x, y), u(y)⊗ ϕ(x)〉,
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and we have the following canonical relation:

WF(w) ⊆
(

WF′(K) ◦WF(u)
)
∪WFx(K). (8.29)

Remark 8.1. Note that the suppu should be contained in Ω, otherwise the w may be
ill-defined.

Proof. Step 1. Turn into product. Denote ũ(x, y) = 1(x) ⊗ u(y) where 1(x) is the
constant function. The wavefront set of the function 1(x) is empty, so by Theorem 8.8 we
have

WF(ũ) ⊂
(

WF(1)×WF(u)
)
∪
(

WF(1)× supp0u
)
∪
(
supp01×WF(u)

)
= ∅ ∪ ∅ ∪

(
supp01×WF(u)

)
= {(x, y; 0, η) ; x ∈ supp Ω, (y, η) ∈WF(u)}. (8.30)

The w(x) can be written as

w(x) = 〈K(x, y), u(y)〉y =

∫
K(x, y) · ũ(x, y) dy =

∫
Kũ(x, y) dy.

where Kũ stands for the product of K and ũ. By Theorem 8.9, to guarantee the product
Kũ is well-defined, we need to check if the prerequisite(

WF(K) + WF(ũ)
)
∩Ox,y = ∅ (8.31)

is true. It can be shown that the condition
(

WF′(K) ◦WF(u)
)
∩Ox = ∅ guarantees (8.31)

(see Exercise 8.2), so Kũ is well-defined.
Because u ∈ E ′(Ω), we see that for ∀x ∈ Ω, suppKũ(x, ·) is uniformly compact, so by

Lemma 8.10 we have WF
( ∫

Kũ(x, y) dy
)

= WFx(Kũ), so,

WF(w) = WF
( ∫

Kũ(x, y) dy
)

= WFx(Kũ) = WF(Kũ) ◦Oy, (8.32)

where we used the fact that for general distribution f ∈ D′(Ω× Ω),

WFx(f) = WF(f) ◦Oy.

Step 2. Use product Theorem. Combining (8.32) with Theorem 8.9, we can have

WF(w) = WF(Kũ) ◦Oy ⊂
((

WF(K) + WF(ũ)
)
∪WF(K) ∪WF(ũ)

)
◦Oy

= M1 ∪M2 ∪M3, (8.33)

where 
M1 :=

(
WF(K) + WF(ũ)

)
◦Oy,

M2 := WF(K) ◦Oy,
M3 := WF(ũ) ◦Oy.

The set WF(K) + WF(ũ) can be expressed as

WF(K) + WF(ũ)

= {(x, y; ξ, η) ; ξ = ξ1 + ξ2, η = η1 + η2, (x, y; ξ1, η1) ∈WF(K), (x, y; ξ2, η2) ∈WF(ũ)}
= {(x, y; ξ, η) ; η = η1 + η2, (x, y; ξ, η1) ∈WF(K), (y, η2) ∈WF(u)}. (by (8.30))

Thus,

M1 =
(

WF(K) + WF(ũ)
)
◦Oy = {(x, ξ) ; (x, y; ξ,−η) ∈WF(K), (y, η) ∈WF(u)}

= {(x, ξ) ; (x, y; ξ, η) ∈WF′(K), (y, η) ∈WF(u)} = WF′(K) ◦WF(u). (8.34)
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By (8.30) it can also be checked that

M2 = WFx(K), M3 = ∅. (8.35)

Combining (8.34), (8.35) with (8.33), we obtain (8.29). The proof is complete. �

Remark 8.2. In Theorem 8.11, if we know in advance that

WF(K) ⊂ (T ∗Ωx\0)× (T ∗Ωy\0),

then WFx(K) = ∅ and (8.29) can be reduced to

WF(w) ⊆WF′(K) ◦WF(u). (8.36)

The set WF′(K) is called the twist of WF(K), and the operation “WF′(K)◦” is called
canonical relation of the operator:

u(y) 7→ w(x) := 〈K(x, y), u(y)〉
which takes K as its kernel. These can be generalized to the theory of Fourier integral
operators.

8.3. The wavefront sets of Fourier integral operators

Recall the notion of phase function given in Definition 3.1.

Theorem 8.12. Assume ϕ ∈ C∞(Rn×RN ) is a phase function of order 1, and a ∈ Sm
is a symbol. Define A(x) as

A(x) :=

∫
eiϕ(x,θ)a(x, θ) dθ, (8.37)

where the integral is understood as an oscillatory integral. Then A induces a distribution
(also denoted as A) A ∈ D ′(Ω) for any domain Ω ⊂ Rn, i.e. A : u ∈ D(Ω) 7→ Iϕ(au) by

A(u) := Iϕ(au) = 〈A, u〉 =

∫
eiϕ(x,θ)a(x, θ)u(x) dx dθ

in oscillatory integral sense. The wavefront set of A satisfies

WF(A) ⊂ {(x, ϕx(x, θ)) ; ϕθ(x, θ) = 0, (x, θ) /∈ Smo(a)}. (8.38)

Remark 8.3. When the following conditions are satisfied, the inclusion “⊂” in (8.38)
can be improved to “=” (see contexts preceding [dHHU2, Theorem 3.9], [CCS+97, The-
orem 3.9]):

(1) the phase function ϕ is non-degenerate on Cφ := {(x, θ) ; ϕθ(x, θ) = 0, (x, θ) /∈
Smo(a)}, i.e. the N -(n+N) matrix dφθ is full rank on Cφ, here

dφθ(x, θ) =
(
φθx(x, θ) φθθ(x, θ)

)
;

(2) the map (x, θ) 7→ (x, ϕx(x, θ)) is injective when restricted to Cφ.

Readers may distinguish the A appeared in Theorem 8.12 with the operator B defined as

Bu(x) :=

∫
eiϕ(x,y,θ)a(x, y, θ)u(y) dy dθ.

The A is a distribution while the B just defined is an operator, namely, A maps a function
to a scalar while B maps a function to another function.

However, A is a generalization of B, because

〈Bu(x), v(x)〉 =

∫
eiϕ(x,y,θ)a(x, y, θ)u(y)v(x) dx dy dθ



8.3. THE WAVEFRONT SETS OF FOURIER INTEGRAL OPERATORS 87

= 〈
∫
eiϕ(x,y,θ)a(x, y, θ) dθ, (v ⊗ u)(x, y)〉

= 〈KB, v ⊗ u〉.

where B̃ is defined as

KB(x, y) :=

∫
eiϕ(x,y,θ)a(x, y, θ) dθ.

Hence the operator B can be turned into a form of (8.37).
Moreover, we have Bu(x) = 〈KB(x, y), u(y)〉, so by combining Theorems 8.12 and 8.11,

hopefully we can obtain WF(Bu).

Short proof of Theorem 8.12. This short proof is for summarizing the key idea of
proving this theorem and thus the details may not be rigorously correct. After this short
proof, we also present a formal proof of Theorem 8.12.

According to the Definition 8.4 ,we fix a cutoff function φ with φ(x0) 6= 0 and compute

φ̂A(ξ) = A(φe−ix·ξ) = (2π)−n/2
∫
ei(ϕ(x,θ)−x·ξ)φ(x)a(x, θ) dx dθ,

and the basic idea is to use N times (with N large enough) the operator L := (ϕx(x,θ)−ξ)·∇x
i|ϕx(x,θ)−ξ|2

acting on ei(ϕ(x,θ)−x·ξ) and the fact (8.3) to get the desired estimate. But in order to do so,
one needs to first address some singularities in the oscillatory integral. We have

φ̂A(ξ) '
∫
Rnx
e−ix·ξφ(x)

( ∫
Rnθ
eiϕ(x,θ)a(x, θ) dθ

)
dx

'
∫
Rnx
e−ix·ξφ(x)

( ∫
Rnθ

(
ϕθ(x, θ) · ∇θ
|ϕθ(x, θ)|2

)Neiϕ(x,θ)a(x, θ) dθ
)

dx

∼
∫
Rnx
e−ix·ξφ(x)

( ∫
Rnθ
eiϕ(x,θ)|ϕθ(x, θ)|−N∂Nθ a(x, θ) dθ

)
dx. (8.39)

Then as N be large enough, the ∂Nθ a(x, θ) will be integrable w.r.t. θ. But we notice that
|ϕθ(x, θ)|−1 has singularity at θ = 0, so we first exclude the neighborhood of the origin of θ
by using a cutoff function χ with χ(0) 6= 0 as follows

φ̂A(ξ) '
∫
ei(ϕ(x,θ)−x·ξ)φ(x)χ(θ)a(x, θ) dx dθ +

∫
ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dx dθ

=

∫
Rnx
e−ix·ξφ(x)

( ∫
Rnθ
eiϕ(x,θ)χ(θ)a(x, θ) dθ

)
dx

+

∫
Rnx
e−ix·ξφ(x)

( ∫
Γx

eiϕ(x,θ)(1− χ(θ))a(x, θ) dθ
)

dx

+

∫
θ/∈Γx

ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dx dθ

=: I1(ξ) + I2(ξ) + I3(ξ),

where

Γx := {θ ; a(x, θ) = O(|θ|−∞)}. (8.40)

The I1(ξ) and I2(ξ) areO(|ξ|−∞) as |ξ| → +∞, because these terms
∫
Rnθ
eiϕ(x,θ)χ(θ)a(x, θ) dθ

and
∫

Γx
eiϕ(x,θ)(1−χ(θ))a(x, θ) dθ are smooth in terms of x (for the first term, it is because
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the actual integral domain is compact, i.e. is contained in supp θ; for the second term, it is
because the integrand decays at infinity order). Then we can compute I3 as follows,

I3(ξ) '
∫
Rnx
e−ix·ξφ(x)

( ∫
ϕθ(x,θ)6=0 and θ/∈Γx

(
ϕθ(x, θ) · ∇θ
|ϕθ(x, θ)|2

)Neiϕ(x,θ)(1− χ(θ))a(x, θ) dθ
)

dx

+

∫
Rnx
e−ix·ξφ(x)

( ∫
ϕθ(x,θ)=0 and θ/∈Γx

eiϕ(x,θ)(1− χ(θ))a(x, θ) dθ
)

dx

=: I4(ξ) + I5(ξ).

Now here comes the key point: to obtain 〈ξ〉−N , for I4 we differentiate e−ix·ξ

w.r.t. x, and for I5 we differentiate ei(ϕ−x·ξ) w.r.t. x.
We can estimate I4 by using the computation as in (8.39),

I4(ξ) '
∫
Rnx
e−ix·ξφ(x)

( ∫
ϕθ(x,θ)6=0 and θ/∈Γx

(
ϕθ(x, θ) · ∇θ
|ϕθ(x, θ)|2

)Neiϕ(x,θ)(1− χ(θ))a(x, θ) dθ
)

dx

∼
∫
Rnx
e−ix·ξφ(x)

( ∫
ϕθ(x,θ)6=0 and θ/∈Γx

eiϕ(x,θ)|ϕθ(x, θ)|−N∂Nθ ((1− χ)a) dθ
)

dx,

where the integer N can be arbitrary. And hence we have I4(ξ) = O(|ξ|−∞) for the same
reason as I1.

It is the I5 which finally decides WF(A). For ξ 6= ϕx(x, θ), we can have I3 as follows,

I5(ξ) =

∫
ϕθ(x,θ)=0,

(x,θ)/∈Smo(a)

ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dx dθ (8.41)

=

∫
ϕθ(x,θ)=0,

(x,θ)/∈Smo(a)

[((ϕx(x, θ)− ξ) · ∇x
i|ϕx(x, θ)− ξ|2

)N1+N2ei(ϕ(x,θ)−x·ξ)]φ(x)(1− χ(θ))a(x, θ) dx dθ

(8.42)

.
∫
ϕθ(x,θ)=0,

(x,θ)/∈Smo(a)

〈ϕx(x, θ)− ξ〉−N1−N2φ(x)|a(x, θ)|dx dθ

.
∫
ϕθ(x,θ)=0,

(x,θ)/∈Smo(a)

〈ξ〉−N1〈ϕx(x, θ)〉−N2φ(x)〈θ〉m dx dθ

' 〈ξ〉−N1

∫
ϕθ(x,θ)=0,

(x,θ)/∈Smo(a)

φ(x)〈θ〉m−N2 dx dθ ' 〈ξ〉−N1 ,

To guarantee the derivation from (8.41) to (8.42), we need ξ 6= ϕx(x, θ) for these (x, θ)
which satisfy ϕx(x, θ) = 0 and (x, θ) /∈ Smo(a). We finished the proof. �

Formal proof of Theorem 8.12. We do some preparation first. Define A as the
collection of subsets Ω in Rnx × (Rnξ \{0}) where (x, ξ) ∈ Ω ⇒ (x, tξ) ∈ Ω for any t > 0,

and B as the collection of subsets in Rnx × Sn−1
ξ . Then there is a one-to-one correspondence

between A and B, and we denote the one-to-one mapping as S,

S : Ω ∈ A 7→ SΩ = {(x, η) ; ∃ξ ∈ Rn s.t. η = ξ/|ξ| and (x, ξ) ∈ Ω} ∈ B.
Let T : (x, θ) 7→ (x, ϕx(x, θ)). Note that ST = TS. For any positive integer k, denote

Vk := {(x, θ) ∈ Rnx × Rnξ ; |ϕθ(x, θ)| ≤ 1/k}. (8.43)

It can be checked that

• {Vk}k and {TVk}k are decreasing in terms of k,
• Vk and TVk are closed in Rnx × (Rnξ \{0}),
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• Vk, TVk ∈ A,
• SVk and STVk (= TSVk) are also closed in Rnx × Sn−1

ξ .

Now let’s assume

(x0, ξ0) /∈ TVk, (8.44)

then (x0, ξ0/|ξ0|) is not in STVk, which is a closed set. Therefore, there exists ε1 > 0 such
that

{(x, ξ/|ξ|) ; |x− x0| ≤ ε1, |ξ/|ξ| − ξ0/|ξ0|| ≤ ε1} ∩ STVk = ∅. (8.45)

Because ∇(x,θ)ϕ(x, θ) is always assumed to be nonzero, the number

inf
|x−x0|≤ε1, θ∈Sn−1

(
|ϕx(x, θ)|+ |ϕθ(x, θ)|

)
exists and is positive and we denote it as ε2,

ε2 := inf
|x−x0|≤ε1, θ∈Sn−1

(
|ϕx(x, θ)|+ |ϕθ(x, θ)|

)
> 0. (8.46)

Let k0 be any positive integer such that

k0 > 2d1/ε2e. (8.47)

Now, for any (x, θ) ∈ SVk0 , we know (x, θ) ∈ Vk0 , so (8.43) gives |ϕθ(x, θ)| ≤ 1/k0 < ε2/2,
so from (8.46) we can conclude that

|ϕx(x, θ)| > ε2/2 > 0 in W := {(x, θ) ∈ SVk0 ; |x− x0| ≤ ε1}. (8.48)

Fix some φ ∈ C∞c (B(x0, ε1)). And χ ∈ C∞c (Rn) is a cut-off function with support

containing the origin. Now we estimate φ̂A(ξ). We have

φ̂A(ξ) = A(φe−ix·ξ) = (2π)−n/2
∫
ei(ϕ(x,θ)−x·ξ)φ(x)a(x, θ) dx dθ

'
∫
ei(ϕ(x,θ)−x·ξ)φ(x)χ(θ)a(x, θ) dx dθ +

∫
ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dx dθ

=

∫
Rnx
e−ix·ξφ(x)

( ∫
Rnθ
eiϕ(x,θ)χ(θ)a(x, θ) dθ

)
dx

+

∫
(x,θ)∈Smo′(a)

ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dθ dx

+

∫
(x,θ)/∈Smo′(a)

ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dx dθ

=: I1(ξ) + I2(ξ) + I3(ξ), (8.49)

where Smo′(a) is an arbitrary subset of Smo(a) such that for every fixed x, the projection of
the intersect S((x,Rnξ )∩Smo(a)) is a compact subset of the sphere Sn−1. The (x,Rnξ ) means

{(x, ξ) ∈ Rnx ×Rnξ ; ξ ∈ Rn}. The term I1 is easy to estimate. The
∫
Rnθ
eiϕ(x,θ)χ(θ)a(x, θ) dθ

in I1 is C∞-smooth in terms of x, so by using integration by parts we can have

|I1(ξ)| = |
∫
Rnx
e−ix·ξC(x) dx| ≤ Cαξ−α, ∀ξ, ∀multi-index α. (8.50)

where C is some function in C∞c (Rn). The estimation (8.50) gives

|I1(ξ)| ≤ CN 〈ξ〉−N , ∀ξ, ∀N ∈ N. (8.51)

And I2 can be estimated as follows,

|I2(ξ)| = |
∫
Rnx
e−ix·ξφ(x)

( ∫
{θ ; (x,θ)∈Smo′(a)}

eiϕ(x,θ)(1− χ(θ))a(x, θ) dθ
)

dx|
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= |
∫
Rnx

[(
i|α|ξ−α∂αx

)
e−ix·ξ

]
φ(x)

( ∫
{θ ; (x,θ)∈Smo′(a)}

eiϕ(x,θ)(1− χ(θ))a(x, θ) dθ
)

dx|

= ξ−α|
∫
Rnx
e−ix·ξ∂αx

[
φ(x)

( ∫
{θ ; (x,θ)∈Smo′(a)}

eiϕ(x,θ)(1− χ(θ))a(x, θ) dθ
)]

dx|.

It is easy to check that the term in
[
· · ·
]

are C∞-smooth and compactly supported w.r.t. x,
thus it is integrable. Therefore,

|I2(ξ)| ≤ CN 〈ξ〉−N , ∀ξ, ∀N ∈ N. (8.52)

Then we move on to I3,

I3(ξ) =

∫
(Smo′(a))c

ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dx dθ

=

∫
(Smo′(a))c∩(Vk0 )c

ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dx dθ

+

∫
(Smo′(a))c∩Vk0

ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dx dθ

=: I4(ξ) + I5(ξ), (8.53)

where (Smo′(a))c signifies the complementary set of Smo′(a). Note that in (Vk0)c, the
|ϕθ(x, θ)| is no less that 1/k0 (c.f. (8.43)), thus no singularity will accrue when |ϕθ(x, θ)|
appears in the denominator. Hence, for I4 we have

I4(ξ) =

∫
(Smo′(a))c∩(Vk0 )c

ei(ϕ(x,θ)−x·ξ) φ(x)(1− χ(θ))a(x, θ) dx dθ

=

∫
e−ix·ξ φ(x)

( ∫
eiϕ(x,θ)(1− χ(θ))a(x, θ) dθ

)
dx

=

∫ [
(i|α|ξ−α∂αx )e−ix·ξ

]
φ(x)

( ∫
eiϕ(x,θ)(1− χ(θ))a(x, θ) dθ

)
dx

' ξ−α
∫
e−ix·ξ

∑
β≤α

(
α

β

)
∂α−βx φ(x) · ∂βx

( ∫
eiϕ(x,θ)(1− χ(θ))a(x, θ) dθ

)
dx

' ξ−α
∫
e−ix·ξ

∑
β≤α

(
α

β

)
∂α−βx φ(x)

· ∂βx
( ∫

(
−iϕθ(x, θ) · ∇θ
|ϕθ(x, θ)|2

)N (eiϕ(x,θ))(1− χ(θ))a(x, θ) dθ
)

dx

. ξ−α
∑
β≤α

∫
e−ix·ξCα,β∂

α−β
x φ(x)

( ∫
〈θ〉m+|β|−N dθ

)
dx

≤ Cαξ−α, ∀ξ, ∀multi-index α. (8.54)

Now for the estimation of I5, we need some constraints on the direction of ξ. It is this
term that determines WF(A). Because (x0, ξ0) /∈ TVk0 (see (8.44)), according to (8.45),
there is a cone W ⊂ Rnξ \{0} such that

ξ0 ∈W and |∇xϕ(x, θ)− ξ| ≥ C(|∇xϕ(x, θ)|+ |ξ|),∀ξ ∈W. (8.55)

Define L := −i(∂xϕ(x,θ)−ξ)·∇x
|∇xϕ(x,θ)−ξ|2 . By using the fact that

|∂αLf(x)| . |∇xϕ(x, θ)− ξ|−1
∑
β

|∂βf(x)|,
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we can have, for all ξ ∈W ,

I5(ξ) =

∫
(Smo′(a))c∩Vk0

ei(ϕ(x,θ)−x·ξ)φ(x)(1− χ(θ))a(x, θ) dx dθ

=

∫
(Smo′(a))c∩Vk0

LN (ei(ϕ(x,θ)−x·ξ))φ(x)(1− χ(θ))a(x, θ) dx dθ

=

∫
(Smo′(a))c∩Vk0

ei(ϕ(x,θ)−x·ξ) tLN
(
φ(x)(1− χ(θ))a(x, θ)

)
dx dθ

.
∫

suppφ×Rnθ
(1 + |ϕx(x, θ)− ξ|)−N 〈θ〉m dx dθ

(N1 +N2 = N) . 〈ξ〉−N1

∫
suppφ×Rnθ

〈|θ| · ϕx(x, θ/|θ|)〉−N2〈θ〉m dx dθ

(
by (8.48)

)
. 〈ξ〉−N1

∫
suppφ×Rnθ

〈θ〉−N2〈θ〉m dx dθ

. 〈ξ〉−N1 ∀N1 ∈ N. (8.56)

Combining (8.44), (8.47), (8.49), (8.51), (8.52), (8.53), (8.54) and (8.56), we arrive at

|φ̂A(ξ)| . 〈ξ〉−N , ξ ∈W, ∀N ∈ N, (8.57)

where the W is a cone containing ξ0, and (x0, ξ0) 6= (x, ϕx(x, θ)) for these (x, θ) satisfying

(x, θ) ∈ (Smo′(a))c ∩ Vk0 .
Therefore, for any k0 > 2d1/ε2e, there holds(

{(x, ϕx(x, θ)) ; |ϕθ(x, θ)| ≤ 1/k0, (x, θ) ∈ (Smo′(a))c}
)c
⊂
(

WF(A)
)c
,

thus
WF(A) ⊂ {(x, ϕx(x, θ)) ; |ϕθ(x, θ)| ≤ 1/k0, (x, θ) /∈ Smo′(a)}.

Finally, let k0 goes to zero and choose Smo′(a) to be arbitrarily close to Smo(a), we arrive
at the conclusion (8.38). �

8.4. Applications

Now we are ready to apply those results.

8.4.1. Microlocality of ΨDOs.

Proposition 8.13. Assume a ∈ S+∞(Rnx × Rny × Rnξ ) is symbol and K is the kernel of
the corresponding ΨDO of a, then

WF(K) ⊂ {(x, x; ξ,−ξ) ; (x, x, ξ) /∈ Smo(a)}. (8.58)

Proof. Denote the corresponding ΨDO as A, then

〈K(x, y), u⊗ v(x, y)〉 = 〈K(x, y), u(x)⊗ v(y)〉 = 〈〈K(x, y), u(x)〉x, v(y)〉y

= 〈Au(y), v(y)〉 = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ)u(x)v(y) dx dy dξ

= (2π)−n
∫
ei(x−y)·ξa(x, y, ξ)u⊗ v(x, y) dx dy dξ.

Therefore, in the oscillatory integral sense,

K(x, y) = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ) dξ.
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According to Theorem 8.12, we have

WF(K) ⊂ {(x, y;ϕx,y(x, y, ξ)) ; ϕξ(x, y, ξ) = 0, (x, y, ξ) /∈ Smo(a)},
where ϕ(x, y, ξ) = (x− y) · ξ. Hence,

WF(K) ⊂ {(x, y; ξ,−ξ) ; x− y = 0, (x, y, ξ) /∈ Smo(a)}
= {(x, x; ξ,−ξ) ; (x, x, ξ) /∈ Smo(a)}.

The proof is complete. �

Theorem 8.14. Assume that A is a ΨDO, then for u ∈ E ′ we have

microlocality: WF(Au) ⊆WF(u)\ Smo(A). (8.59)

Moreover, if A is elliptic in the sense of Definition 6.4, then Smo(A) = ∅ and

WF(Au) = WF(u). (8.60)

Proof. We have Au(x) = 〈K(x, y), u(y)〉 where K is its kernel, so according to Theo-
rem 8.11 and Proposition 8.13, we can conclude

WF(Au) ⊆
(

WF′(K) ◦WF(u)
)
∪WFx(K)

=
(
{(x, x; ξ, ξ) ; (x, ξ) /∈ Smo(a)} ◦WF(u)

)
∪ ∅

= WF(u)\ Smo(a) = WF(u)\Smo(A).

If A is elliptic, then according to the definition, we have

|a(x, ξ)| ≥ C〈ξ〉m, when x ∈ Rn, |ξ| ≥ R,
for some constants m ∈ R, C > 0 and R > 0, so it is obvious that Smo(A) = ∅, thus by
(8.59),

WF(Au) ⊆WFu.

Also, because A is elliptic, then by Theorem 6.6 we know A has a parametrix B such that
R := BA− I ∈ Ψ−∞, so

WF(u) = WF(BAu−Ru) ⊂WF(BAu) ∪WF(Ru) ⊂WF(Au).

In total, WF(Au) = WFu. The proof is complete. �

Lemma 8.15. Assume a is a symbol and u ∈ E ′(Ω). Denote the corresponding ΨDO of
a as A, then

WF(Au) ∩ Smo(a) = ∅. (8.61)

Proof. This is a straight forward outcome of (8.59). �

8.4.2. Pull-back of distributions.

Theorem 8.16. Let Ω1 and Ω2 be two domain in Rn, and ψ : Ω1 → Ω2 is an diffeomor-
phism. Then for any u ∈ D ′(Ω2), we have ψ∗u ∈ D ′(Ω1), and

WF(ψ∗u) = {(x, tψ′|xη) ; (ψ(x), η) ∈WF(u)}, (8.62)

where ψ′ signifies the matrix whose (i-row, j-column) element is ∂xiψ
j, and (tψ′)−1|x is the

inverse of transpose of the matrix ψ′ evaluated at x, and (tψ′)−1|xη stands for the matrix
multiplication of the matrix (tψ′)−1|x and the vertical vector η.

The mapping in (8.62),
(x, tψ′|xη) 7→ (ψ(x), η)

is invariant on the cotangent bundle (see [Ma20b, for Theorem 18.1.17]).
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First proof of Theorem 8.16. It is obvious that ψ∗u ∈ D ′(Ω1).
For (y0, ξ0), because ψ is a diffeomorphism, we can find (x0, η0) such that x0 = ψ−1(y0)

and ξ0 = (ψ−1)′|y0 · η0. Assume that (y0, ξ0) /∈ WF(u). For a smooth cutoff function ϕx0
satisfying ϕx0(x0) 6= 1, we have

(ϕx0ψ
∗u)∧(η) '

∫
e−ix·ηϕx0(x)ψ∗u(x) dx =

∫
e−ix·η0ϕx0(x)u(ψ(x)) dx

=

∫
e−iψ

−1(y)·ηϕx0(ψ−1(y))u(y) dψ−1(y)
(
y = ψ(x)

)
=

∫
e−i

tψ−1(y)η · ϕx0(ψ−1(y))|∂ψ
−1

∂y
(y)|φ−1(y) · (φu)(y) dy

=

∫
e−i

tψ−1(y)η · ϕ̃y0(y) · (φu)(y) dy =

∫
e−i(

tψ−1(y)η−y·ξ) · ϕ̃y0(y) · φ̂u(ξ) dξ dy

=

∫
|ξ̂0−ξ̂|>1

e−i(
tψ−1(y)η−y·ξ) · ϕ̃y0(y) · φ̂u(ξ) dξ dy

+

∫
|ξ̂0−ξ̂|≤1

e−i
tψ−1(y)ηeiy·ξ · ϕ̃y0(y) · φ̂u(ξ) dξ dy

=: I1 + I2,

where ξ̂ := ξ/|ξ| and the same for ξ̂0. For convenience we have written ψ−1(y) · η as
tψ−1(y)η, where tM signifies the transpose operation for any matrix M . By doing so it will
be more straightforward when we make derivatives. Here ϕ̃y0(y) is a generic function which
is C∞-smooth and is compactly supported w.r.t. y and whose precise definition may varies
from line to line.

For I1, because |ξ̂0 − ξ̂| > 1 and (y0, ξ0) /∈ WF(u), we have
∣∣(tψ−1)′|yη − ξ

∣∣ ≥ 1
2 and

|φ̂u(ξ)| . 〈ξ〉−N0 for some integer N0. The number N0 comes from the fact that φu is a
compactly supported distribution so its Fourier transform has (at most) polynomial growth.
Hence,

I1 =

∫
|ξ̂0−ξ̂|>1

(1 + ((tψ−1)′|yη − ξ) · ∇y
〈(tψ−1)′|yη − ξ〉2

)N(
e−i(ψ

−1(y)·η−y·ξ)) · ϕ̃y0(y) · φ̂u(ξ) dξ dy

'
∫
|ξ̂0−ξ̂|>1

〈(tψ−1)′|yη − ξ〉−Ne−i(ψ
−1(y)·η−y·ξ) · ϕ̃y0(y) · φ̂u(ξ) dξ dy

.
∫
|ξ̂0−ξ̂|>1

〈(tψ−1)′|yη〉−N1〈ξ〉−N2 · |ϕ̃y0(y)| · |φ̂u(ξ)|dξ dy (N = N1 +N2)

. 〈η〉−N1

∫
|ξ̂0−ξ̂|>1

〈ξ〉−N2 · (
∫
|ϕ̃y0(y)| dy) · |φ̂u(ξ)|dξ

. 〈η〉−N1

∫
|ξ̂0−ξ̂|>1

〈ξ〉−N2〈ξ〉N0 dξ . 〈η〉−N1 ,

provided that N2 −N0 > the dimension of ξ.
For I2, we have

I2 =

∫
|ξ̂0−ξ̂|≤1

(1 + ((tψ−1)′|yη) · ∇y
〈(tψ−1)′|yη〉2

)N(
e−iψ

−1(y)·η)eiy·ξ · ϕ̃y0(y) · φ̂u(ξ) dξ dy

'
∫
|ξ̂0−ξ̂|≤1

〈(tψ−1)′|yη〉−Ne−iψ
−1(y)·η ·

(
∇y
)N(

eiy·ξ · ϕ̃y0(y)
)
· φ̂u(ξ) dξ dy
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'
∫
|ξ̂0−ξ̂|≤1

〈η〉−Ne−iψ−1(y)·η · 〈ξ〉N ϕ̃y0(y) · φ̂u(ξ) dξ dy

. 〈η〉−N
∫
|ξ̂0−ξ̂|≤1

〈ξ〉N · (
∫
|ϕ̃y0(y)| dy) · |φ̂u(ξ)| dξ

. 〈η〉−N
∫
|ξ̂0−ξ̂|≤1

〈ξ〉N 〈ξ〉−N−n−1 dξ . 〈η〉−N .

In total, we have |(ϕx0ψ∗u)∧(η)| . 〈η〉−N for any integer N if η̂ is in a small neighborhood
of η̂0 where (ψ(x0), (tψ−1)′|y0η0) /∈WF(u), namely,

(ψ(x0), (tψ−1)′|ψ(x0)η0) /∈WF(u) ⇒ (x0, η0) /∈WF(ψ∗u).

Therefore,

(x0, η0) ∈WF(ψ∗u) ⇒ (ψ(x0), (tψ−1)′|ψ(x0)η0) ∈WF(u),

so

WF(ψ∗u) ⊂ {(x, η) ; (ψ(x), (tψ−1)′|ψ(x)η) ∈WF(u)}.

Because ψ is invertible, we can obtain the opposite inclusion by looking at ψ−1∗(ψ∗u).
It can be shown that (ψ−1)′|ψ(x) = (ψ′(x))−1. Indeed, by differentiating x = ψ−1(ψ(x))

w.r.t. x we obtain I = (ψ−1)′|ψ(x) ·ψ′(x), so (ψ−1)′|ψ(x) = (ψ′(x))−1, and by taking transpose
we obtain

(tψ−1)′|ψ(x) = (tψ′(x))−1,

so

WF(ψ∗u) = {(x, η) ; (ψ(x), (tψ′)−1|xη) ∈WF(u)}
= {(x, tψ′|xξ) ; (ψ(x), ξ) ∈WF(u)}.

The proof is complete. �

There is also another proof for Theorem 8.16. As in Remark 8.3, we can use Theorems
8.12 and 8.11 to obtain WF(ψ∗u).

second proof of Theorem 8.16. The pull-back ψ∗ has a kernel: for f ∈ C∞(Ω2)
and g ∈ C∞(Ω1), we have

〈ψ∗f, g〉 =

∫
ψ∗f(x)g(x) dx = (2π)−n

∫
ei(ψ(x)−y)·ηf(y)g(x) dx dy dη

' 〈
∫
ei(ψ(x)−y)·η dη, (g ⊗ f)(x, y)〉

= 〈K, g ⊗ f〉, where K(x, y) =

∫
ei(

tψ(x)−ty)η dη.

and ψ∗u(x) = 〈K(x, y), u(y)〉. By Theorem 8.12 we have

WF(K) ⊂ {(x, ψ(x); tψ′|xη,−η)},

and then by Theorem 8.11 we have

WF(ψ∗u) ⊆
(

WF′(K) ◦WF(u)
)
∪WFx(K) = {(x, tψ′|xη) ; (ψ(x), η) ∈WF(u)}.

The opposite inclusion can be obtained by looking at ψ−1∗(ψ∗u). We obtain (8.62). �
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Exercise

Exercise 8.1. Prove Lemme 8.3.

Exercise 8.2. Prove that the condition
(

WF′(K)◦WF(u)
)
∩Ox = ∅ guarantees (8.31).

Exercise 8.3. Show the details in the computations (8.34) and (8.35).



CHAPTER 9

Propagation of the singularities

9.1. Microlocal parametrix

To study the microlocal parametrix, we recall notion of conic sets and the smooth
direction “Smo” given in Definitions 8.1 & 8.2, and T ∗Rn\0 stands for the cotangent bundle
with the zero section excluded. Now we generalize Definitions 6.1 & 6.4 microlocally, as
follows.

Definition 9.1 (Microlocal parametrix). Assume m ∈ R and T ∈ Ψm. We call a ΨDO
S a left (resp. right) microlocal parametrix of T if there exists a nonempty open conic set
Γ ⊂ T ∗Rn\0 such that

Smo(ST − I) = Γ (resp. Smo(TS − I) = Γ).

We call S a microlocal parametrix of T if it is both a left and a right microlocal parametrix
under the same set Γ.

Definition 9.2 (Microlocal ellipticity). Assume m ∈ R and a ∈ Sm, and A is the ΨDO
of a. Let Γ ⊂ T ∗Rn\0 be a open conic set. We say a (and A) is microlocally elliptic in Γ if
for some constants CΓ > 0, R > 0,

|a(x, ξ)| ≥ CΓ〈ξ〉m, ∀(x, ξ) ∈ Γ, |ξ| ≥ R.

We write CharA := (
⋃

F )c , where F = {Γ ; A is microlocally elliptic in Γ}, and the

notation Ωc stands for the complement of Ω in T ∗Rn\0.

From Definition 9.2, it is obvious that CharA is always closed, and

A is microlocally elliptic in (CharA)c.

The following claim is trivial.

Lemma 9.3. CharA = ∅ if and only if A is elliptic in the sense of Definition 6.4.

Lemma 9.4. Assume P is the ΨDO with principal symbol pm(x, ξ) homogeneous in ξ,
then CharP = p−1

m (0), where p−1
m (0) signifies the set {(x, ξ) ∈ T ∗Rn\0 ; pm(x, ξ) = 0}.

The proof is left as an exercise. The CharA and Smo(A) is closely related. Results in
§6.1 can be modified to a microlocal version.

Theorem 9.5 (Microlocal ellipticity ⇔ Microlocal parametrix). Let m ∈ R and A ∈
Ψm. Assume A is microlocally elliptic in Γ, where Γ = (CharA)c is non-empty. Then A
has a microlocal parametrix B. Moreover, they satisfy

(CharA)c ⊂ Smo(I −BA). (9.1)

Conversely, if A has either a right or a left microlocal parametrix, then A is microlocally
elliptic.

96
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Proof. (⇒) Fix (x0, ξ0) ∈ Γ. In the proof of Theorem 6.6, we modify the function
χ(ξ) to χ(x, ξ) which is given as χ(x, ξ) := χ(x − x0)χ(ξ/|ξ| − ξ0/|ξ0|). Define bj(x, ξ) :=
(1− χ(x, ξ))/a(x, ξ) · rj(x, ξ) (j ≥ 0) the same way, with r0 ≡ 1, and follow the same steps
as in the proof of Theorem 6.6 we can obtain ∀N ∈ N,

σ(AB) = 1− (1 + r1 + · · ·+ rN )χ− rN+1 + S−N−1 = 1 + S−N−1 in ⊂ Γ,

as in (6.3), so
σ(I −AB) ∈ S−∞ in ⊂ Γ.

Due to the arbitrary of χ, we conclude

σ(I −AB) ∈ S−∞ in Γ.

Hence, by Definition 8.2 we obtain Γ ⊂ Smo(I −AB).
(⇐) Assume B is the right parametrix of A, then there exists a nonempty conic open

set Γ ⊂ T ∗Rn\0 such that Smo(AB − I) ⊂ Γ, which means a#b = 1 + S−∞ in Γ. where a
and b are symbols of A and B, respectively. Similar to the proof of Theorem 6.7, we can
prove that

|a(x, ξ)| ≥ 〈ξ〉m/2, when (x, ξ) ∈ Γ, 〈ξ〉 ≥ C/2.
Therefore, a is microlocally elliptic in Γ. The proof for the left-case is similar.

The proof is complete. �

Corollary 9.6. For any A ∈ Ψ+∞ and any u ∈ S ′, there holds

WF(Au) ⊂WFu ⊂WF(Au) ∪ CharA.

Remark 9.1. Here we give a intuitive explanation of the second inclusion relation in
Corollary 9.6. We picturize the singular direction of u and Au at a given point x0 in Fig. 1,
and denote these two sets as P and Q respectively. On the left-hand-side of Fig. 1 we only
draw P while on the right-hand-side we draw P and Q together. We mark P with light gray
color and Q with dark gray. Because WF(Au) ⊂ WFu, Q is contained in P . Obviously,
P = Q ∪ (P\Q). Then what is P\Q? On P\Q, u is still singular while Au is not, so A
changed the singularity of u on P\Q. Thus, A cannot be elliptic on P\Q because microlocal
ellipticity does not change singularity. Therefore, P\Q ⊂ CharA.

x0

P : WFu at x0

x0

P\Q

Q : WF(Au) at x0

Figure 1. Illustrative demonstration of WFu ⊂WF(Au) ∪ CharA.

Proof of Corollary 9.6. The “WF(Au) ⊂ WFu” is from Theorem 8.14. When
CharA = T ∗Rn\0, the claim is trivial. When CharA $ T ∗Rn\0, (CharA)c is non-empty,
so by Theorem 9.5, there exists a microlocal parametrix B of A, so we can have

WFu = WF(BAu+ (I −BA)u)

⊂WF(BAu) ∪WF((I −BA)u)

⊂WF(BAu) ∪
(

WFu\Smo(I −BA)
)

(by (8.59))

= WF(BAu) ∪
(

WFu ∩ (Smo(I −BA))c
)
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⊂WF(BAu) ∪
(

WFu ∩ CharA
)

(by Theorem 9.5)

=
(

WF(BAu) ∪WFu
)
∩
(

WF(BAu) ∪ CharA
)

⊂WFu ∩
(

WF(BAu) ∪ CharA
)
, (by (8.59))

which gives

WFu ⊂WF(BAu) ∪ CharA ⊂WF(Au) ∪ CharA.

The proof is complete. �

Remark 9.2. Combining Corollary 9.6 and Lemma 9.3, we have{
A is elliptic: WF(Au) ⊂WFu ⊂WF(Au) ⇔ WF(Au) = WFu

A is microlocally elliptic: WF(Au) ⊂WFu ⊂WF(Au) ∪ CharA,

Hence, Corollary 9.6 can be viewed as a generalization of (8.60).

Remark 9.3. Corollary 9.6 can be generalized to analytic wavefront set, see [Hör03,
Theorem 8.6.1]. See also [Hör03, Defintion 8.4.3] for the definition of the analytic wavefront
set.

The following result is important.

Theorem 9.7. Assume u ∈ S ′, then

WF(u) =
⋂

A∈Ψ+∞, Au∈C∞
CharA.

Proof. By Corollary 9.6, we have WFu ⊂WF(Au) ∪ CharA, so

WF(u) ⊂
⋂

Au∈C∞
CharA.

For the another direction, assume (x0, ξ0) /∈WF(u), then we shall construct a suitable ΨDO
A such that

Au ∈ C∞, and (x0, ξ0) /∈ Char(A), (9.2)

which gives (x0, ξ0) /∈
⋂
Au∈C∞ CharA, and so

(WF(u))c ⊂ (
⋂

Au∈C∞
CharA)c ⇒

⋂
Au∈C∞

CharA ⊂WF(u),

and the proof will be finished.
It remains to construct such an operator A, and we present two ways to do it.
Method 1. Because WF(u) is closed and (x0, ξ0) /∈ WF(u), so there exist bounded

open neighborhoods ω, ω′ of x0 and conic open neighborhoods V , V ′ of ξ0 such that{
ω $ ω′, V $ V ′,

ω′ × V ′ ∩WF(u) = ∅.

We denote Γ := ω × V and Γ′ := ω′ × V ′, then Γ ⊂ Γ′ and Γ′ ∩WF(u) = ∅, so

WF(u) ⊂ Γc. (9.3)

Choose a ∈ C∞(R2n) such that{
supp a ⊂ Γ, and a(x0, ξ0) = 1,

a(x, ξ) = a(x, ξ/|ξ|) when |ξ| ≥ 1.
(9.4)
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It can be shown that a ∈ S0 (see Exercise 9.2) and (x0, ξ0) /∈ Char(Ta). Moreover, because
a ≡ 0 in Γc and Γc is a conic set, we can conclude

Γc ⊂ Smo(Ta) ⇒ (Smo(Ta))
c ⊂ Γ. (9.5)

Hence by Theorem 8.14 we have

WF(Tau) ⊂WF(u)\Smo(Ta) = WF(u) ∩ (Smo(Ta))
c ⊂WF(u) ∩ Γ (by (9.5))

= WF(u)\Γc = ∅, (by (9.3))

which implies Tau ∈ C∞. Condition (9.2) is satisfied.

Method 2. Because (x0, ξ0) /∈ WF(u), there exists φ ∈ C∞c (Rn) such that φ̂u(ξ)
is rapidly decaying when ξ/|ξ| and ξ0/|ξ0| are close enough, say,

∣∣ξ/|ξ| − ξ0/|ξ0|
∣∣ ≤ ε for

certain ε > 0. Hence we choose ψ ∈ C∞(Sn−1) such that ψ(ξ0/|ξ0|) = 1 and ψ(η) = 0 when∣∣η − ξ0/|ξ0|
∣∣ > ε where η ∈ Sn−1. Choose χ ∈ C∞c (Rn) such that χ(ξ) = 1 when |ξ| ≥ 1/10

and χ(ξ) = 0 when |ξ| ≥ 1/5. Now we define a operator A as follows

Aϕ(x) := (2π)−n
∫
R2n

ei(x−y)·ξφ(y)(1− χ(ξ))ψ(ξ/|ξ|)ϕ(y) dy dξ, ϕ ∈ S (Rn).

The purpose of the term “1−χ(ξ)” is to cutoff the singularity near ξ = 0. By Theorem 5.4
we see A is a ΨDO of order 0 with symbol

a(x, ξ) = φ(x)(1− χ(ξ))ψ(ξ/|ξ|) + S−1, (9.6)

By (9.6) we can show (x0, ξ0) /∈ CharA, see Exercise 9.3. We can extend A from S to S ′,
and we have

Âu(ξ) = (1− χ(ξ))ψ(ξ/|ξ|)φ̂u(ξ),

so Âu is rapidly decaying, which means Au ∈ C∞. Condition (9.2) is satisfied.
The proof is complete. �

9.2. Bicharacteristics

To prove the main result, we first introduce the notion of bicharacteristics. The Hamil-
tonian Hp of p is defined as:

Hp := ∇ξp · ∇x −∇xp · ∇ξ. (9.7)

By Theorem 5.3 we can see

σ([P,Q]) = ∇ξpm · ∇xqm −∇xpm · ∇ξqm + Sm1+m2−2

= Hpmqm + Sm1+m2−2,

where m1, m2 are the order of P and Q, and pm, qm are principal symbols of P and Q,
respectively.

In what follows we use the notation T ∗Rn\0 := {(x, ξ) ∈ T ∗Rn ; ξ 6= 0}. We introduce
the notion of bicharacteristic. For more details on the Hamiltonian flows, see [Sal07, §2].

Definition 9.8 (Null bicharacteristic). Assume p ∈ C1(T ∗Rn\0;R), and I (3 0) is an
open connected subset of R. Let γx0,ξ0 : s ∈ I 7→ (x(s), ξ(s)) ∈ T ∗Rn\0 be a curve. We call
γx0,ξ0 a null bicharacteristic of p when it satisfies (9.8)-(9.9) below,{

ẋ(s) = ∇ξp(x(s), ξ(s)), ξ̇(s) = −∇xp(x(s), ξ(s)),

(x(0), ξ(0)) = (x0, ξ0) ∈ T ∗Rn\0,
(9.8)

p(x0, ξ0) = 0. (9.9)

And we call γx0,ξ0 bicharacteristic of p when it only satisfies (9.8).
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It can be easily seen that the values of p on any bicharacteristic curve will not change,
i.e.

∀t, p(γx0,ξ0(t)) = p(x0, ξ0) = const.

Note that in Definition 9.8, the function p is assumed to be real-valued. Without this
assumption, we cannot guarantee that (x(s), ξ(s)) are coordinate components.

Under certain assumptions on p, the domain of γ can always be extended to R.

Lemma 9.9. For small enough ε > 0, there exists a unique solution γ : (−ε, ε) 7→
(x(s), ξ(s)) ∈ T ∗Rn\0 for the Hamiltonian equation (9.8). Moreover, assume either

(1) ∇(x,ξ)p is uniformly bounded in {(x(s), ξ(s)/|ξ(s)|) ; s ∈ (−ε, ε)}, p is homogeneous
of order 1;

(2) or ∇xp is uniformly bounded in {(x(s), ξ(s)) ; s ∈ (−ε, ε)}, p is homogeneous of
order µ ≥ 1, and ∇ξp is bounded in uniformly bounded in {(x(s), ξ(s)/|ξ(s)|) ; s ∈
(−ε, ε)};

then the domain of definition of γ can be extended from (−ε, ε) to R.

Proof. Part 1: local solution. We use the Banach fixed-point theorem to show the
existence of local solution. For simplicity denote η0 := (x0, ξ0) and η(s) := (x(s), ξ(s)) and
F (η(s)) := (∇ξp(η(s)),−∇xp(η(s))), and we define a mapping F :

F : η ∈ C(I, T ∗Rn\0) 7→ η0 +

∫ s

0
F (η(τ)) dτ ∈ C(I, T ∗Rn\0).

Fix ε ≤ (2‖∇F‖)−1, and let I = (−ε, ε). Then for any η1, η2 ∈ C(I, T ∗Rn\0), we have

‖Fη1 −Fη2‖C(I) = ‖
∫ s

0
[F (η1(τ))− F (η2(τ))] dτ‖C(I)

≤ ε‖F (η1)− F (η2)‖C(I) ≤ ε‖∇F‖‖η1 − η2‖C(I)

≤ 1

2
‖η1 − η2‖C(I).

The Banach fixed-point theorem can be applied, and we can find a fixed point η of F such
that

η(s) = η0 +

∫ s

0
F (η(τ)) dτ, ∀s ∈ I ⇒ η satisfies (9.8).

We proved the existence.
For the uniqueness, assume η1, η2 solve (9.8). Because η1(0) = η2(0), if there are not

equal, their derivatives must be differ at a point, but this violates the first two equations in
(9.8). The first part of the claim is proven.

Part 2: global solution (cf [Sal07, §2]). To obtain the global solution, we can extend
the local solution from (−ε, ε) to [−ε, ε], and then just paste local solutions on [−ε, ε],
[ε − ε′, ε + ε′], [ε + ε′ − ε′′, ε + ε′ + ε′′], etc. Now we show the endpoints extensions can be
done. Assume γ is a local solution on I = (−ε, ε) as given in Part 1.

Assume ∇(x,ξ)p is uniformly bounded in {(x(s), ξ(s)/|ξ(s)|) ; s ∈ (−ε, ε)}, and p is ho-
mogeneous of order 1. From (9.8) we can have

d

ds

(
|ξ(s)|2

)
= 2ξ(s) · ξ̇(s) = −2ξ(s) · ∇xp(x(s), ξ(s)) = m(s)|ξ(s)|2, (9.10)

where m(s) := −2ξ̂(s)·∇xp(x(s), ξ̂(s)) with ξ̂(s) := ξ(s)/|ξ(s)|. Here because ξ(0) = ξ0 6= 0,
and ξ(s) is continuous on s, so we can choose the interval I = (−ε, ε) to be small enough

such that ξ(s) 6= 0 for ∀s ∈ I, and this can make ξ̂(s) always well-defined. Solve (9.10) we
obtain

|ξ(s)| = e−
∫ s
0 ξ̂(τ)·∇xp(x(τ),ξ̂(τ)) dτ |ξ(0)|,
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so

e−εM1 |ξ(0)| ≤ |ξ(s)| ≤ eεM1 |ξ(s)|
where M1 = sup{(x(s),ξ(s)/|ξ(s)|) ; s∈(−ε,ε)} |∇xp|, so {ξ(s) ; s ∈ (−ε, ε)} is contained in a

bounded domain. Similarly, for x(s) we have

|ẋ(s)| = |∇ξp(x(s), ξ(s))| = |∇ξp(x(s), ξ̂(s))| ≤ sup
Rnx×Sn−1

|∇ξp|

where M2 = sup{(x(s),ξ(s)/|ξ(s)|) ; s∈(−ε,ε)} |∇ξp|. Note that we used the homogeneity of p
again. This gives

|x(s)− x(0)| ≤ sn1/2M2.

Or, if ∇xp is uniformly bounded in {(x(s), ξ(s)) ; s ∈ (−ε, ε)}, p is homogeneous of

order µ ≥ 1, and ∇ξp is uniformly bounded in {(x(s), ξ(s)/|ξ(s)|) ; s ∈ (−ε, ε)}, by |ξ̇(s)| =
|∇xp(x(s), ξ(s))| we can have

|ξ(s)| = |ξ(0) +

∫ s

0
ξ̇(τ) dτ | ≤ |ξ(0)|+

∫ s

0
|∇xp|dτ ≤ |ξ(0)|+ sM ≤ |ξ(0)|+ εM ′1.

where M ′1 = sup{(x(s),ξ(s)) ; s∈(−ε,ε)} |∇xp|. And similarly, for x(s) we have

|ẋ(s)| = |∇ξp(x(s), ξ(s))| = |ξ(s)|µ−1|∇ξp(x(s), ξ̂(s))| ≤ (|ξ(0)|+ εM ′1)M ′2,

where M ′2 = sup{(x(s),ξ(s)/|ξ(s)|) ; s∈(−ε,ε)} |∇ξp|.
Therefore, in both two cases the (x(s), ξ(s)) lives in a bounded domain when s ∈ (−ε, ε),

thus due to the continuity of x(s) and ξ(s) we can extend the domain of definition of γ from
(−ε, ε) to [−ε, ε].

After extension, we set new initial value (x0, ξ0) to be (x(ε), ξ(ε)) and by Part 1 we can
get a local solution on (ε− ε′, ε+ ε′) for some small enough ε′. By doing this repeatedly, we
can obtain a solution defined in R. The proof is complete. �

Lemma 9.10. Let a symbol p be homogeneous, i.e. p(x, λξ) = λp(x, ξ) for λ ∈ R+. Then

we have γx0,λξ0(t) = (x(t), λξ(t)) for ∀λ ∈ R+.

Proof. Because p is homogeneous, from (9.8) we have
ẋ(s) = ∇ξp(x(s), ξ(s)) = ∇ξp(x(s), λξ(s)),

λξ̇(s) = −λ∇xp(x(s), ξ(s)) = −∇xp(x(s), λξ(s)),

p(x0, λξ0) = λp(x0, ξ0),

so (x(t), λξ(t)) is also a solution of (9.8), with (x(0), λξ(0)) = (x0, λξ0). The proof is
done. �

Lemma 9.11. Let T > 0. Assume a real-valued symbol p ∈ S1 is homogeneous of order
1, and F ∈ C∞([0, T ] × (T ∗Rn\0)) and φ ∈ C∞(T ∗Rn\0). Then there exists a unique
solution q ∈ C∞(R× (T ∗Rn\0)) satisfying{

(∂t +Hp)q(t, x, ξ) = F (t, x, ξ),

q(0, x, ξ) = φ(x, ξ),

where Hp is the Hamiltonian of p. The solution is given by

∀(x0, ξ0) ∈ T ∗Rn, q(t, γx0,ξ0(t)) = φ(x0, ξ0) +

∫ t

0
F (τ, γx0,ξ0(τ)) dτ.

More, when F and φ are homogeneous (with ξ) of order m ∈ R, then q is also homogeneous
(with ξ) of order m ∈ R.
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Proof. Let γx0,ξ0(t) = (x(t), ξ(t)) be the bicharacteristic of p starting from (x0, ξ0).
The existence of γx0,ξ0 is guaranteed by Lemma 9.9. Then we have

(∂t +Hp)q(t, x(t), ξ(t)) = (∂t +∇ξp · ∇x −∇xp · ∇ξ)q(t, x(t), ξ(t))

= (∂t + ẋ(t) · ∇x + ξ̇(t) · ∇ξ)q(t, x(t), ξ(t))

=
d

dt

(
q(t, x(t), ξ(t))

)
,

so d
dt

(
q(t, x(t), ξ(t))

)
= F (t, x(t), ξ(t)), which gives

q(t, x(t), ξ(t)) = q(0, x(0), ξ(0)) +

∫ t

0
F (τ, x(τ), ξ(τ)) dτ

= φ(x0, ξ0) +

∫ t

0
F (τ, x(τ), ξ(τ)) dτ.

For the homogeneity, fix (x, ξ) ∈ T ∗Rn\0, we solve the Hamiltonian equation with initial
point (x, ξ) and we can obtain a bicharacteristic γx,ξ. Fix t ∈ R, we set (x0, ξ0) := γx,ξ(−t),
so reversely we represent (x, ξ) as γx0,ξ0(t) = (x(t), ξ(t)). Because p is homogeneous of order
1, by Lemma 9.10 we have (x(t), λξ(t)) = γx0,λξ0(t), so

q(t, x, λξ) = q(t, x(t), λξ(t)) = q(t, γx0,λξ0(t)) = φ(x0, λξ0) +

∫ t

0
F (τ, γx0,λξ0(τ)) dτ

= φ(x0, λξ0) +

∫ t

0
F (τ, (x(t), λξ(τ))) dτ

= λm[φ(x0, ξ0) +

∫ t

0
F (τ, x(τ), ξ(τ)) dτ ] = λmq(t, x(t), ξ(t)).

The proof is done. �

9.3. Propagation of singularities

For other literature on this topic, [Jos99, §10] is a good reference. See [Shu01, A.1.3]
and [GS94, §8] for different proofs. Now we are ready for the main result.

Theorem 9.12. Assume m ∈ R and P ∈ Ψm is classical ΨDO of real principal type,
and denote its principal symbol as pm(x, ξ). We assume either

• u ∈ S ′(Rn), or,
• P is properly supported and u ∈ D ′(Rn).

Let Pu ∈ C∞ and pm(x0, ξ0) = 0. If (x0, ξ0) /∈WF(u), then γx0,ξ0 ∩WF(u) = ∅ where the
γx0,ξ0 is a null bicharacteristic of pm defined in Definition 9.8. In other words, for a null
bicharacteristic γ, it holds either γ ⊂WF(u) or γ ∩WF(u) = ∅.

We are to find a time-dependent ΨDO Q(t, x,D) such that γx0,ξ0(t) /∈ Char(Q|t) and
Q|tu ∈ C∞, then WF(u) ⊂WF(Q|tu) ∪ Char(Q|t) = Char(Q|t), and so γx0,ξ0(t) /∈WF(u).
The construction of such a Q uses Hamiltonian vector flow.

Proof of Theorem 9.12. Step 1: change to Ψ1. Choose an elliptic Ta ∈ Ψ1−m with
a(x, ξ) > 0 and a(x, ξ) be real-valued, then

WF(TaPu) = WF(Pu) ⇒ TaPu ∈ C∞ if and only if Pu ∈ C∞,

namely, Ta does not change the wavefront set of Pu.
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Also, we can show Ta does not change null bicharacteristics of the principal symbol of
P as follows. Assume (x(s), ξ(s)) solves (9.8) with pm(x(0), ξ(0)) = 0. Let’s assume we can
find a function f(s) such that

f(s) :=

∫ s

0
a(x(f(r)), ξ(f(r))) dr.

This is possible because it amounts to find a fix point of the transform I◦a◦γ : C∞(R;R)→
C∞(R;R) where Ig(s) :=

∫ s
0 g(r) dr and γ(s) := (x(s), ξ(s)).

After obtained such an f , we can see f is a bijection because f ′ = a > 0. Denote

x̃(s) := x(f(s)), ξ̃(s) := ξ(f(s)).

If (x(s), ξ(s)) is defined on a interval I, then we say (x̃(s), ξ̃(s)) is defined on a interval

I ′ := f−1(I), so pm(x̃(s), ξ̃(s)) = 0 for s ∈ I ′, and we can have

˙̃x(s) = f ′(s)ẋ(f(s)) = a(x(f(s)), ξ(f(s)))∇ξpm(x(f(s)), ξ(f(s)))

= a(x̃(s), ξ̃(s))∇ξpm(x̃(s), ξ̃(s))

= a(x̃(s), ξ̃(s))∇ξpm(x̃(s), ξ̃(s)) + pm(x̃(s), ξ̃(s))∇ξa(x̃(s), ξ̃(s))

= ∇ξ(apm)(x̃(s), ξ̃(s)).

Similarly, we have
˙̃
ξ(s) = −∇x(apm)(x̃(s), ξ̃(s)).

These mean the null bicharacteristic (x(s), ξ(s)) of pm, after a reparametrization, is also a
null bicharacteristic of apm. Note that apm is the principal symbol of TaP . Hence, to prove
the claim for P ∈ Ψm is equivalent to prove the claim for P ∈ Ψ1, so, in the rest of the
proof we assume P ∈ Ψ1 of real principal type.

Step 2: find a t-dependent Q = Q(t, x,D) such that

Qu|t=0 ∈ C∞. (9.11)

Our plan is to construct a sequence of t-dependent ΨDOs Qj = Qj(t, x,D) ∈ Ψ−j

(j ≥ 0) having classical symbol qj , and set Q ∼
∑

j Qj . Here Qj(t, x,D) ∈ Ψ−j means its

symbol qj(t, x, ξ) is in S−j([0, T ]× Rnx × Rnξ ), i.e.,

|∂α′t ∂α
′′

x ∂βξ qj(t, x, ξ)| . 〈ξ〉
−j−|β|,

see Definition 2.4.
Because (x0, ξ0) /∈WF(u), we have (x0, tξ0) /∈WF(u) for ∀t > 0, and we can find a open

conic neighborhood ω of (x0, ξ0) such that ω∩WF(u) = ∅. Choose a function χ(x, ξ) ∈ C∞
satisfying{

χ(x, ξ) ∈ C∞, suppχ ⊂ ω, χ(x, λξ) = χ(x, ξ) (∀λ > 0),

χ ≡ 1 in a sufficiently small open conic neighborhood ω̃ of (x0, ξ0).
(9.12)

Set q0(0, x, ξ) := χ(x, ξ) (the values of q0 for t > 0 will be determined later), then ωc ⊂
Smo(Q0|t=0) where ωc signifies the complement of the set ω in T ∗Rn, so by Theorem 8.14,

WF(Q0u|t=0) = WF((Q0|t=0)u) ⊂WF(u)\ Smo(Q0|t=0)

= WF(u) ∩
(

Smo(Q0|t=0)
)c

⊂WF(u) ∩ ω = ∅,

so Q0u|t=0 ∈ C∞. For Qj (j ≥ 1), we set their symbol at t = 0 as zero, i.e.,

q0(0, x, ξ) := χ(x, ξ), qj(0, ·, ·) := 0 (j ≥ 1), (9.13)
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then Qj |t=0 ∈ Ψ−∞, so Qju|t=0 ∈ C∞ for j ≥ 1. By Theorem 2.6 we can find a Q satisfying

Q ∼
∑

j Qj (thus Q is also t-dependent)1. Q is of order 0. We can conclude (9.11). The

values of qj (j ≥ 0) for t > 0 will be determined later in (9.21).
Step 3: to make Q satisfy

(Dt + P )(Qu) ∈ C∞. (9.14)

To achieve (9.14) is equivalent to achieve

[Dt + P,Q] ∈ Ψ−∞ (9.15)

because

(Dt + P )(Qu) = [Dt + P,Q]u+Q(Dt + P )u = [Dt + P,Q]u+QPu

= [Dt + P,Q]u+ C∞.

Here we used WF(QPu) ⊂WF(Pu) = ∅, so QPu ∈ C∞. The fact QDtu = 0 comes from u
being independent of t. Readers may note that in Step 2 we only determined qj on {t = 0},
while qj on {t > 0} hasn’t been fixed yet. Here we design qj |t>0 to achieve (9.15).

We use the notation σ(A) to signify the symbol of A. Because P is classical, we can
expand σ(P ) as

∑
k pk for some homogeneous symbols pk ∈ S1−k. Recall Step 1, we see

the integral curve of Hpm is the same as Hp1 . Then by Theorem 5.3 and Remark 5.2, we
have

σ([Dt, Q]) ∼
∑
α

(−i)|α|

α!
(∂ατ τ)∂αt (

∑
j≥0

qj)−
∑
α

(−i)|α|

α!
(∂αt τ)∂ατ (

∑
j≥0

qj)

= τ
∑
j≥0

qj + (−i)∂t
∑
j≥0

qj − τ
∑
j≥0

qj =
1

i

∑
j≥0

∂tqj , (9.16)

and

σ([P,Q]) ∼
∑
α

(−i)|α|

α!
∂αξ (
∑
k≥0

pk)∂
α
x (
∑
j≥0

qj)−
∑
α

(−i)|α|

α!
∂αx (
∑
k≥0

pk)∂
α
ξ (
∑
j≥0

qj)

=
∑
k≥0

∑
j≥0

∑
α

(−i)|α|

α!

(
(∂αξ pk)∂

α
x − (∂αx pk)∂

α
ξ

)
qj

=
∑
`≥0

∑
j+k+|α|=`

(−i)|α|

α!

(
(∂αξ pk)∂

α
x − (∂αx pk)∂

α
ξ

)
qj

=
∑
`≥1

∑
j+k+|α|=`
|α|≥1

Lj,k,αqj , (it can be checked that Lj,k,αqj ∈ S1−`)

where the linear differential operator Lj,k,α := (−i)|α|
α! (∂αξ pk)∂

α
x − (∂αx pk)∂

α
ξ . Note that p0 is

the principal symbol of P so p0 is real-valued. Also note that the restrictions ` ≥ 1, |α| ≥ 1
come from the fact that when |α| = 0, Lj,k,α = pk − pk = 0. It can be checked

|α| = 1 ⇒
∑
|α|=1

Lj,k,αqj =
1

i
Hpkqj . (9.17)

1Note that such Q is not unique.
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We can group different terms in σ([P,Q]) as follows,

σ([P,Q]) ∼ 1

i
Hp0q0 +

∑
`≥2

∑
j+k+|α|=`
|α|≥1

Lj,k,αqj

=
1

i
Hp0q0 +

∑
`≥2

( ∑
j+k+|α|=`
|α|≥1, j=`−1

Lj,k,αqj +
∑

j+k+|α|=`
|α|≥1, j<`−1

Lj,k,αqj
)

=
1

i
Hp0q0 +

∑
`≥2

( ∑
|α|=1

Lj=`−1,k=0,αqj +
∑

j+k+|α|=`
|α|≥1, j<`−1

Lj,k,αqj
)

=
1

i
Hp0q0 +

∑
`≥2

(1

i
Hp0q`−1 +

∑
j+k+|α|=`
|α|≥1, j<`−1

Lj,k,αqj
)

(by (9.17))

=
1

i
Hp0q0 +

∑
`≥1

(1

i
Hp0q` +

∑
j+k+|α|=`+1
|α|≥1, j<`

Lj,k,αqj
)

(`→ `− 1). (9.18)

Combining (9.16) with (9.18), we obtain

σ([Dt + P,Q]) ∼ 1

i
(∂t +Hp0)q0 +

∑
`≥1

(1

i
(∂t +Hp0)q` +

∑
j+k+|α|=`+1
|α|≥1, j<`

Lj,k,αqj
)
. (9.19)

The requirement (9.15) thus amounts to require σ([Dt + P,Q]) ∈ S−∞, namely,
(∂t +Hp0)q0 = 0,

1

i
(∂t +Hp0)q` = −

∑
j+k+|α|=`+1
|α|≥1, j<`

Lj,k,αqj , ` ≥ 1. (9.20)

Combining (9.20) with initial condition (9.13), these qj (j ≥ 0) can be solved iteratively in
[0, T ] × T ∗Rn by using see Lemma 9.11 (recall that p0 is real-valued), and gives, ∀(x, ξ) ∈
T ∗Rn\0, 

q0(t, γx,ξ(t)) = χ(x, ξ),

q`(t, γx,ξ(t)) = −i
∫ t

0

∑
j+k+|α|=`+1
|α|≥1, j<`

Lj,k,αqj(τ, γx,ξ(τ)) dτ, ` ≥ 1. (9.21)

And they guarantee σ([Dt + P,Q]) ∈ S−∞, so (9.15) is achieved, thus (9.14) is satisfied.
By iteration we can show the RHS of (9.21) is of order −`, so the second conclusion in

Lemma 9.11 implies q` is homogeneous of order −`, so they are all classical symbols.
Step 4: apply a hyperbolic PDE result. Combining (9.11) and (9.14), we can conclude{

(Dt + P )(Qu) = F in R+ × Rn,
Qu|t=0 = ϕ on Rn,

(9.22)

for some F ∈ C∞(R+ × Rn) and ϕ ∈ C∞(Rn). By using Lemma 9.15 in advance, we
conclude Qu ∈ C([0, T ], C∞(Rn)).
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Step 5: conclusion. From Qu ∈ C([0, T ], C∞(Rn)) we see Q|tu ∈ C∞ for each t ∈ [0, T ],

where Q|t is an abbreviation of Q(t, x,D). Thus by Corollary 9.6 we have

WF(u) ⊂WF(Q|tu) ∪ Char(Q|t) = Char(Q|t),

namely, WF(u) is a subset of Char(Q|t). Now we show γx0,ξ0(t) /∈ Char(Q|t), so that we

can conclude γx0,ξ0 ∩WF(u) = ∅.
The characteristic set Char(Q|t) is the complement of the microlocal elliptic set of Q|t,

which only depends on the principal symbol of Q|t. The principal symbol of Q|t is q0(t, x, ξ).
Recall γx0,ξ0(t) = (x(t), ξ(t)). Hence, to show γx0,ξ0(t) /∈ Char(Q|t), it is enough to show
q0(t, ·) is elliptic at γx0,ξ0(t) = (x(t), ξ(t)), namely, to show

q0(t, x(t), λξ(t)) ≥ C〈λ〉m

for certain m ∈ R. From (9.21) we see q0(t, γx0,ξ0(t)) = χ(x0, ξ0). By Lemma 9.10, the
homogeneity of p0 gives (x(t), λξ(t)) = γx0,λξ0(t), so

∀λ > 0, q0(t, x(t), λξ(t)) = q0(t, γx0,λξ0(t)) (by Lemma 9.10) (9.23)

= χ(x0, λξ0) = χ(x0, ξ0) (by (9.21), (9.12))

6= 0. (by (9.12))

This means Q is elliptic at (x(t), ξ(t)) = γx0,ξ0(t), which means γx0,ξ0(t) /∈ Char(Q|t). The
proof is complete. �

Remark 9.4. The condition that P is of real principal type is used in the following
ways:

• real-valued: in Step 3, in order to use Lemma 9.11, pm has to be real-valued; Also,
when pm is real-valued, then R := iP + (iP )∗ is of order 0. This is used in Step
4 which calls for Lemma 9.15;
• |∇ξpm(x, ξ)| 6= 0 when p(x, ξ) = 0: related to the solvability of (9.21)? Every

(x, ξ) ∈ T ∗Rn\0 shall be reachable;
• homogeneity: the condition “pm(x, λξ) = λpm(x, ξ)” is used at (9.23) to guarantee

(x(t), λξ(t)) = γx0,λξ0(t).

Theorem 9.12 can be interpreted by the following claim.

Corollary 9.13. Assume m ∈ R and P ∈ Ψm is classical ΨDO of real principal type,
and denote its symbol as p(x, ξ). Assume Pu is well-defined and Pu ∈ C∞. Then WF(u)
is made of null bicharacteristic curves γx,ξ for some (x, ξ) ∈ p−1

m (0).

Proof. We see that P is a ΨDO with principal symbol pm(x, ξ) homogeneous in ξ, so
we can apply Lemma 9.4 to conclude CharP = p−1

m (0). Also, when Pu ∈ C∞, by Corollary
9.6 we have WF(u) ⊂ CharP , so

WF(u) ⊂ p−1
m (0). (9.24)

For any (x, ξ) ∈ WF(u), by (9.24) we know (x, ξ) ∈ p−1
m (0). Denote as γx,ξ the null

bicharacteristic of pm passing through (x, ξ), then γx,ξ ⊂ p−1
m (0) because the value of pm is

constant in bicharacteristics. According to Theorem 9.12, we can conclude γx,ξ ⊂WF(u). In
summary, for every (x, ξ) ∈WF(u) we have γx,ξ ⊂WF(u) and γx,ξ is a null bicharacteristic,
so WF(u) is made of null bicharacteristic curves. �
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9.4. Cauchy problems of hyperbolic PDEs

Lemma 9.14. Assume T > 0 and s ∈ R, P ∈ Ψ1 has a real-valued principal symbol.
Denote L = Dt + P . There exists a constant λ0 > 0 such that for any

u ∈ C1([0, T ], Hs(Rn)) ∩ C([0, T ], Hs+1(Rn)),

we have

sup
t∈[0,T ]

e−λt‖u(t, ·)‖Hs ≤ ‖u(0, ·)‖Hs + 2

∫ T

0
e−λt‖Lu(t, ·)‖Hs dt. (9.25)

Proof. Denote Q = iP and L′ = iL = ∂t +Q. Then

σ(Q+Q∗) = σ(iP + (iP )∗) = iσ(P − P ∗) = i[σ(P ) + S0 − σ(P )− S0] ∈ S0,

because the principal symbol of P is real-valued. We denote R = Q+Q∗, then R ∈ Ψ0 and
thus is bounded in L2.

We prove the case s = 0 first. Denote f(t) := ‖e−λtu(t, ·)‖2L2 , then

f ′(t) = 2e−2λt<(∂tu, u)− 2λf(t) = 2e−2λt<((L′ −Q)u, u)− 2λf(t)

= 2e−2λt<(L′u, u) + e−2λt(−Ru, u)− 2λf(t)

≤ 2e−2λt‖Lu(t, ·)‖L2‖u(t, ·)‖L2 + e−2λt‖Ru(t, ·)‖L2‖u(t, ·)‖L2 − 2λf(t)

≤ 2e−2λt‖Lu(t, ·)‖L2‖u(t, ·)‖L2 − (2λ− ‖R‖)‖e−λtu(t, ·)‖2L2

≤ 2e−2λt‖Lu(t, ·)‖L2‖u(t, ·)‖L2 , (when λ > ‖R‖/2),

where ‖R‖ is the L2 operator norm. Hence, for any t ∈ [0, T ],

e−2λt‖u(t, ·)‖2L2 ≤ ‖u(0, ·)‖2L2 + 2

∫ t

0
e−2λs‖Lu(s, ·)‖L2‖u(s, ·)‖L2 ds

≤ ‖u(0, ·)‖2L2 + 2

∫ T

0
e−2λt‖Lu(t, ·)‖L2‖u(t, ·)‖L2 dt.

By denoting M := supt∈[0,T ] e
−λt‖u(t, ·)‖Hs , we can continue

M2 ≤ ‖u(0, ·)‖2L2 + 2

∫ T

0
e−2λt‖Lu(t, ·)‖L2‖u(t, ·)‖L2 dt

≤M‖u(0, ·)‖L2 + 2

∫ T

0
e−λt‖Lu(t, ·)‖L2M dt

≤M(‖u(0, ·)‖L2 + 2

∫ T

0
e−λt‖Lu(t, ·)‖L2 dt).

We arrive at the conclusion for s = 0.
For s 6= 0, we can do something similar as in Step 2 of the proof of Theorem 6.18. This

completes the proof. �

Based on the energy estimate in Lemma 9.14, we can obtain the following result.

Lemma 9.15. Assume T > 0 and s ∈ R, P ∈ Ψ1 has a real-valued principal sym-
bol. Let f ∈ L1((0, T ), Hs(Rn)) and φ ∈ Hs(Rn). Then there is a unique solution
u ∈ C([0, T ], Hs(Rn)) of the PDE{

(Dt + P )u = f in (0, T )× Rn,
u|t=0 = φ on Rn,

(9.26)
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Proof. Step 1: variational formulation. Denote
X := {ϕ ∈ C∞([0, T ]× Rn) ; ϕ(T, ·) ≡ 0}

`(ϕ) :=

∫ T

0
(f, ϕ) dt+

1

i
(φ, ϕ).

We say u ∈ S ′([0, T ]× Rn) is a weak solution of (9.26) if u satisfies∫ T

0
(u, (Dt + P ∗)ϕ) dt = `(ϕ), ∀ϕ ∈ X. (9.27)

To find a u ∈ L∞((0, T ), Hs) satisfying (9.27), we are to show |`(ϕ)| ≤ ‖(Dt + P ∗)ϕ‖L1H−s ,

and the call for the Hahn-Banach theorem. Here ‖f‖L1H−s is a shorthand for
∫ T

0 ‖f‖H−s dt.

Step 2: energy estimate. Because P ∈ Ψ1 has a real-valued principal symbol, we
see −P ∗ ∈ Ψ1 and −P ∗ also has a real-valued principal symbol. Apply Lemma 9.14 to
Dt + (−P ∗) and ϕ(T − t, x) we obtain

sup
t∈[0,T ]

e−λt‖ϕ(T − t, ·)‖H−s ≤ ‖ϕ(T, ·)‖H−s + 2

∫ T

0
e−λt‖(Dt + (−P ∗))(ϕ(T − t, ·))‖H−s dt,

which gives

sup
t∈[0,T ]

eλt‖ϕ(t, ·)‖H−s ≤ 2

∫ T

0
eλt‖(Dt + P ∗)ϕ(t, ·)‖H−s dt.

so
∀s ∈ R, sup

t∈[0,T ]
‖ϕ(t, ·)‖H−s ≤ 2eλT ‖(Dt + P ∗)ϕ‖L1H−s . (9.28)

This means the map ϕ 7→ (Dt + P ∗)ϕ is injective. (9.28) can be understood as a coercive
condition.

Step 3: Hahn-Banach theorem. By using (9.28), we can estimate ` as follows,

|`(ϕ)| ≤
∫ T

0
|(f, ϕ)| dt+ |(φ, ϕ)| ≤

∫ T

0
‖f‖Hs‖ϕ‖H−s dt+ ‖φ‖Hs‖ϕ‖H−s

≤
( ∫ T

0
‖f‖Hs dt+ ‖φ‖Hs

)
sup
t∈[0,T ]

‖ϕ(t, ·)‖H−s

≤ C
( ∫ T

0
‖f‖Hs dt+ ‖φ‖Hs

)
‖(Dt + P ∗)ϕ‖L1H−s .

Therefore, the linear functional `(ϕ) is also a linear functional for (Dt + P ∗)ϕ ∈ X under
the norm L1((0, T ), H−s). Because the dual space of L1((0, T ), H−s) is L∞((0, T ), Hs), by
the Hahn-Banach theorem, there exists a u ∈ L∞((0, T ), Hs) such that

`(ϕ) = (u, (Dt + P ∗)ϕ)t,x, ∀ϕ ∈ X,
which is (9.27). This u is a weak solution.

Step 4: weak to strong solution. Because u is a distribution, on (0, T ) we have

Dtu+ Pu = f.

Because u ∈ L∞((0, T ), Hs), Pu ∈ L∞((0, T ), Hs−1).
Let f , φ be Schwartz, then f ∈ L∞([0, T ], Hs), so Dtu = f − Pu ∈ L∞((0, T ), Hs−1),

which implies
u ∈ C([0, T ], Hs−1).

Again, f ∈ C([0, T ], Hs−2) and Pu ∈ C([0, T ], Hs−2), so Dtu = f − Pu ∈ C((0, T ), Hs−2),
which implies

u ∈ C1([0, T ], Hs−2) ∩ C([0, T ], Hs−1) with u(0) = φ.
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Due to the arbitrary of s, we can conclude

u ∈ C1([0, T ], Hs) ∩ C([0, T ], Hs+1) with u(0) = φ. (9.29)

Therefore, (u, (Dt + P ∗)ϕ)t,x can be legally write as ((Dt + P )u, ϕ)t,x, which implies u is a
strong solution of (9.26).

Step 5: density arguments for f , φ. (9.29) is true when f and φ are Schwartz. For
general f ∈ L1((0, T ), Hs(Rn)) and φ ∈ Hs(Rn), due to the density, we can find {fk} ⊂ S
and {φk} ⊂ S such that

fk → f in L1((0, T ), Hs(Rn)), φk → φ in Hs(Rn), and

(Dt + P )uk = fk, u|t=0 = φk, uk ∈ C1([0, T ], Hs) ∩ C([0, T ], Hs+1). (9.30)

From (9.30) and Lemma 9.14 we can obtain

e−λT ‖uk − uk′‖C([0,T ],Hs) ≤ ‖φk − φk′‖Hs + 2‖(fk − fk′)(t, ·)‖L1((0,T ),Hs),

so {uk} is Cauchy in C([0, T ], Hs) and the limit u ∈ C([0, T ], Hs) is a desired solution.
Step 6: uniqueness. By the energy estimate (9.25) it is easy to show the uniqueness of

u.
The proof is complete. �

Exercise

Exercise 9.1. Proof Lemma 9.4.

Exercise 9.2. Prove the function a constructed in (9.4) is in S0.

Exercise 9.3. Show that a defined in (9.6) gives (x0, ξ0) /∈ CharTa. Hint: to borrow
ideas from Lemma 6.17.
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